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Abstract: Whereas in electrical discharge machining (EDM) the heat flux entering 
the workpiece is extremely high, the Fourier heat conduction model may fails. This 
article reports on determination of temperature distribution in the workpiece due to 
EDM using non-Fourier heat conduction model. Equations are solved by deriving 
the numerical solution. The temperature layers and profiles of sample calculations 
show that it is not acceptable applying the Fourier heat conduction model for 
estimating the temperature of workpiece. Also, it can be perceived that according 
to the amount of Vernotte number for a specific Fourier number, it is possible that 
the temperature of different points of workpiece become even lower than initial 
temperature. 
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1 INTRODUCTION 

Shaping of materials for modern manufacturing 
industries with stringent design requirements, such as 
high precision, complex shapes, and high surface 
quality, is inevitable to put them in use [1]. To achieve 
these objectives, advanced machining processes are 
required [2]. Advanced machining techniques have 
been classified into four types [2]: mechanical, thermal, 
chemical machining and electro chemical machining, 
and biochemical machining processes. Among these, 
electrical discharge machining (EDM) is a thermal 
process which has been widely used to produce dies 
and molds [3]. This high technology is developed in the 
late 1940s [4], which support about 7% of all machine 
tool sales in the world [5]. Its unique feature of using 
thermal energy to machine electrically conductive parts 
regardless of hardness has been its distinctive 
advantage in the manufacture of mold, die, automotive, 
aerospace and surgical components [6]. However, it 
suffers from few limitations such as low machining 
efficiency and poor surface finish [7]. To overcome 
these limitations, a number of efforts have been made 
to develop such EDM systems that have capability of 
high material removal rate (MRR), high efficiency, 
high accuracy and precision without making any major 
alterations in its basic principle [8-13]. 
Its method is defined as removing materials from a part 
by means of a series of repeated electrical discharges 
between tool called the electrode and the workpiece in 
the presence of a dielectric fluid [14]. Dielectric fluid 
acts as an electrical insulation barrier in the gap 
between the workpiece and electrode. The maximum 
heat 0q entering the workpiece due to EDM spark is 
represented by [15]: 
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Where cF  is the fraction of total EDM spark power 
going to the cathode, V is the discharge voltage, I is 
the discharge current and 1r  is the spark radius at the 
workpiece surface. 
It can be perceived from simple calculation that, the 
heat flux entering the workpiece in EDM process can 
be more than 21110 −wm . So, if we want to predict the 
temperature of workpiece during the EMD process, 
Fourier heat conduction model cannot be applied [16]. 
In order to eliminate these fails, Cattaneo [17] and 
Vernotte [18], independently proposed a modification 
of Fourier's law. This law is now well known as 
Cattaneo-Vernotte’s constitutive equation: 
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Where q  is the heat flux vector, τ  is the thermal 
relaxation time, k  is the constant thermal conductivity 
of the material and T∇ is the temperature gradient. If 
Eq. (2), combined with the conservation of energy 
gives the hyperbolic heat conduction equation (HHCE): 
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Where 
c

k
ρ

α = , ρ , c  and Δ  are thermal diffusivity, 

mass density, specific heat capacity and Laplace’s 
differential operator, respectively. Equation (3) is a 
hyperbolic partial differential equation and causes the 
propagation speed, reach a limit amount τα , in 

0>τ .  
There are a lot of literatures that applied HHCE 
numerically. Chen and Lin [19] applied a hybrid 
numerical technique to problem in one spatial 
dimension. Chen [20] combined the Laplace transform, 
weighting function scheme and the hyperbolic 
equation, with a conservation term. Zhou et al. [21] 
presented a thermal wave model of bioheat transfer, 
together with a seven-flux model, for light propagation 
and a rate process equation for tissue damage. Yang 
[22] applied a forward difference method to solved 
two-dimensional HHCE. Also, he proved the stable 
condition for the problem. Saedodin et al. [23] 
investigated a new analytical and numerical technique 
to calculate temperature field for a cylinder by using 
hyperbolic model.   A review of the literature indicates 
that there have been no theoretical approaches for 
applying non-Fourier heat conduction model in EDM 
process. In the present paper, an effort has been made 
to study the numerical expression of temperature field 
is obtained for a cylindrical workpiece in EDM 
process. Both non-Fourier and Fourier heat conduction 
equations have been applied for the cylinder. Using our 
numerical solution, we performed sample calculation of 
temperature surfaces and profiles for workpiece.  

2 PROBLEM STATEMENT 

Due to the random and complex nature of EDM, the 
following assumptions are made to make the problem 
mathematically tractable. 
 
2.1. Assumptions 
1. The domain is considered as axisymmetric. 
2. The workpiece material is homogeneous and 
isotropic. 
3. The material properties of the workpiece are 
temperature independent. 
4. The heat transfer to the workpiece is by conduction. 
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2.2. Thermal model 
Consider a cylinder, as shown as Fig. 1. The heat flux 
due to EDM spark is applied normally to the upper 
surface ( LZ = ) of the cylinder but only for 1rr < . 
 

Fig. 1 The cylinder configuration 
 
 

Fig. 2 Thermal model of EDM. 
 

 
Some researchers [24-26] have considered uniformly 
distributed heat source within a spark. This assumption 
is far from reality. This fact is evidenced from the 
actual shape of a crater formed during EDM. In the 
present work, a Gaussian heat flux distribution [27, 28] 
is assumed. If the maximum intensity at the axis of a 
spark and its radius are known, then the heat flux )(rq  
at radius r  is given by: 
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2.2.1. Governing differential equation 
For this case, the non-Fourier heat conduction equation 
without any heat generation, the governing equation 
can then be expressed as: 
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2.2.2. Boundary conditions 
Consider the base ( 0=Z ) surface has been at 
temperature of dielectric fluid. For this case the 
boundary conditions are: 
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2.2.3. Initial conditions 
Consider the solid initially has been at the temperature 
of dielectric fluid. Then: 

∞= TTi  (7) 
Hence the initial conditions are:   

∞= TzrT )0,,(  (8a) 
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2.3. Normalization 
For convenience of subsequent analysis, we introduce 
the following dimensionless quantities: 
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Where θ  is dimensionless temperature and ωξ ,  are 
dimensionless coordinates. Fo  is the Fourier number, 
Ve  is the Vernotte number, M is Square ratio of height 
to radius of cylinder, 1ξ is dimensionless radius of heat 
flux and Bi  is the Biot number. By introducing the 
dimensionless quantities, the normalized temperature of 
the cylinder obeys the Eq. (10): 
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Also, the boundary conditions are: 
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and the initial conditions are: 
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0)0,,( =ωξθ  (12b) 

3 NUMERICAL SOLUTION 

To solve this problem numerically, Eq. (10) should be 
discretized. The discretization can be done in many 
ways, using Finite Element Method (FEM) or Control 
Volume Method (CVM). In this work we adopted an 
implicit Finite Difference Method (FDM). In implicit 
methods, the finite difference approximations of the 
individual exact partial derivatives in the partial 
differential equation are evaluated at the solution time 
level 1+n . The implicit schemes are unconditionally 
stable for any of time step, but the accuracy of the 
solution is only first-order in time. A forward 
difference representation is used for time derivative and 
the central difference representation is used for space 
derivative. Therefore Eq. (10) can be discretized as the 
follows: 
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Arranging the Eq. (13) gives: 
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In our treatment, we assume ωξ Δ=Δ . Hence, Eq. (14) 
leads to the following difference equation: 
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The above system of linear algebraic equations can be 
written in matrix equation as fallowing: 
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Where ][ A  is five-diagonal matrix, ][B  and ][C  are 
just diagonal matrix. 
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Hence, Eq. (17) should be discretized for 0=ξ . 
Thanks to inverse method, the dimensionless 
temperature distribution at each time step can be 
determined. 
As a good comparison, we should solve the same 
problem with Fourier model. If Fourier’s law holds, i.e. 
in the limit 0→Ve , the Eq. (10) takes the form: 
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The numerical solution corresponds to the mesh size of 
025.0=Δξ  and 001.0=ΔFo  

Detailed flow chart of the numerical solution for the 
cylinder temperature profile is shown in Fig. 3.  
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Fig. 3 Flow chart of numerical solution 

4 RESULTS AND DISCUSSION 

Using our numerical solution, we performed sample 
temperature surfaces and profiles in the cylinder for the 
Gaussian type of the heat source. These calculations are 
obtained for 2.01 =ξ  and 16=M . The results of 
calculations are presented in Figs. 4-7.  

Figures 4 and 5 show the surface temperature profiles 
for the two cases. It can be perceived from Fig. 4 that, 
in Fourier model the speed of propagation is infinite. At 
the moment, all of the workpiece can touch the heat 
flux. Also, it can be perceived from Fig. 5 that, because 
of the non-Fourier effect, the heat wave cannot touch 
the other side of the workpiece at the moment and due 
to the non-Fourier effects, heat waves can be seen 
clearly in Fig. 5. As seen in Figs. 4 and 5 the nature of 
Fourier model and non-Fourier model are completely 
different and the amount of temperature from these two 
are not the same. Moreover, these results are in good 
agreement with another manuscript by Saedodin and 
Torabi [29]. 

 

 
Fig. 4 The surface temperature evolution with 5.0=Fo  

for Fourier model 
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Fig. 5 The surface temperature evolution with 
5.0=Fo and 7.0=Ve  for non-Fourier model 

 

 
Fig. 6 The temperature distribution for the non-Fourier 

model with the same Fourier number, but at different 
Vernotte number along the ω  direction 

 
Figure 6 shows temperature profiles along the ω  
direction at 5.0=Fo and 0=ξ in cylinder. This Fig. 
shows that, according the amount of Vernotte number 

for a specific Fourier number, it is possible that the 
temperature of different points of workpiece become 
even lower than initial temperature. This interesting 
behavior does not appear under the Fourier heat 
conduction model. It is noticeable that, if Fourier model 
has been applied, the temperature of all points of the 
workpiece becomes higher than initial temperature. 
Also, it can be seen that due to the non-Fourier effects, 
the temperature of lots of points in the workpiece 
remain steady for some moments.  
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Fig. 7 The surface temperature evolution with different 

Fourier and Vernotte number 

 

Figure 7 shows surface temperature profiles for the five 
cases. It can be seen from Fig. 7 that, the higher 
Vernotte number causes each point to be at initial 
temperature, more. As it is observed, as much as the 
Vernotte number increases, the Fourier number that the 
whole workpiece needs, in order to reach the 
equilibrium temperature, increases. In addition, it can 
be deduced from Fig. 7 that, for the same Fourier 
number as much as the Vernotte number increases, the 
thermal penetration depth decreases. Regarding Fig. 7, 
the thermal wave reflection causes the existence of a 
fracture in the surface temperature profiles of the 
workpiece. Also, it can be seen that, due to the 
reflection of heat waves, the temperature of specific 
points can become lower than initial temperature, 
especially with 9.0=Ve . This interesting behavior 
does not appear under the Fourier heat conduction 
model. 

5 CONCLUSION 

In this paper, the two-dimensional non-Fourier heat 
conduction model was solved numerically for the 
cylindrical workpiece in EDM. We concluded that, due 
to extremely high heat flux during EDM process, 
calculating the thermal relaxation time is important to 
predict the temperature of workpiece. Also, it can be 
seen that, the more the Vernotte number, the more the 
Fourier number passed for the point that can feel the 
thermal wave. We also perceived that, the more the 
Vernotte number, the more the Fourier number needs 
for the workpiece to reach an equilibrium temperature. 
Finally, we observed that, applying the Fourier heat 
conduction model instead of non-Fourier model for 
predicting the temperature of workpiece during EDM 
process has significant differences. 
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