Thermal Analysis of Workpiece under Electrical Discharge Machining (EDM), Using Hyperbolic Heat Conduction Model

Seyfolah Saedodin
Department of Mechanical Engineering,
Islamic Azad University, Semnan Branch, Semnan, Iran
E-mail: S_Sadodin@iust.ac.ir

Mohsen Torabi*
Department of Mechanical Engineering,
Semnan University, Semnan, Iran
E-mail: Torabi_mech@yahoo.com
*Corresponding author

Hadi Eskandar
Department of Mechanical Engineering,
Semnan University, Semnan, Iran
E-mail: Hadi.Eskandar@gmail.com

Received 4 May 2010; Revised 29 July 2010; Accepted 11 September 2010

Abstract: Whereas in electrical discharge machining (EDM) the heat flux entering the workpiece is extremely high, the Fourier heat conduction model may fail. This article reports on determination of temperature distribution in the workpiece due to EDM using non-Fourier heat conduction model. Equations are solved by deriving the numerical solution. The temperature layers and profiles of sample calculations show that it is not acceptable applying the Fourier heat conduction model for estimating the temperature of workpiece. Also, it can be perceived that according to the amount of Vernotte number for a specific Fourier number, it is possible that the temperature of different points of workpiece become even lower than initial temperature.

Keywords: Electrical Discharge Machining (EDM), Non-Fourier Heat Conduction, Numerical Solution, Relaxation Time

Biographical notes: S. Saedodin received his PhD in Mechanical Engineering from Iran University of Science and Technology, Iran. He is currently Assistant Professor at the Department of Mechanical Engineering, Islamic Azad University, Semnan Branch. His current research interest includes heat transfer. M. Torabi is graduate student of mechanical engineering, Semnan University. He received his BSc. in solid mechanics from the Azad University of Tehran, Iran. His current research focuses on analytical and computational analysis of heat transfer, microscale heat transfer, non-Fourier conduction heat transfer and ultrafast heat transfer. H. Eskandar is graduate student of Mechanical Engineering, Semnan University. He received his BSc. in solid mechanics from the Azad University of Tehran, Iran. His current research focuses on new optimization methods such as imperialist competitive algorithm, discrete optimization, fuzzy control systems and numerical heat transfer.

© 2010 IAU, Majlesi Branch
1 INTRODUCTION

Shaping of materials for modern manufacturing industries with stringent design requirements, such as high precision, complex shapes, and high surface quality, is inevitable to put them in use [1]. To achieve these objectives, advanced machining processes are required [2]. Advanced machining techniques have been classified into four types [2]: mechanical, thermal, chemical machining and electro chemical machining, and biochemical machining processes. Among these, electrical discharge machining (EDM) is a thermal process which has been widely used to produce dies and molds [3]. This high technology is developed in the late 1940s [4], which support about 7% of all machine tool sales in the world [5]. Its unique feature of using thermal energy to machine electrically conductive parts regardless of hardness has been its distinctive advantage in the manufacture of mold, die, automotive, aerospace and surgical components [6]. However, it suffers from few limitations such as low machining efficiency and poor surface finish [7]. To overcome these limitations, a number of efforts have been made to develop such EDM systems that have capability of high material removal rate (MRR), high efficiency, high accuracy and precision without making any major alterations in its basic principle [8-13].

Its method is defined as removing materials from a part by means of a series of repeated electrical discharges between tool called the electrode and the workpiece in the presence of a dielectric fluid [14]. Dielectric fluid acts as an electrical insulation barrier in the gap between the workpiece and electrode. The maximum heat \(q \) entering the workpiece due to EDM spark is represented by [15]:

\[
g_0 = \frac{4.56FVF}{\pi r^2} \tag{1}
\]

Where \(F \), \(V \) is the discharge power going to the cathode, \(V \) is the discharge voltage, \(I \) is the discharge current and \(r \) is the spark radius at the workpiece surface.

It can be perceived from simple calculation that, the heat flux entering the workpiece in EDM process can be more than \(10^{11}\text{W/m}^2 \). So, if we want to predict the temperature of workpiece during the EMD process, Fourier heat conduction model cannot be applied [16].

In order to eliminate these fails, Cattaneo [17] and Vernotte [18], independently proposed a modification of Fourier's law. This law is now well known as Cattaneo-Vernotte’s constitutive equation:

\[
q + \tau \frac{\partial q}{\partial t} = -k \nabla T \tag{2}
\]

Where \(q \) is the heat flux vector, \(\tau \) is the thermal relaxation time, \(k \) is the constant thermal conductivity of the material and \(\nabla T \) is the temperature gradient. If Eq. (2), combined with the conservation of energy gives the hyperbolic heat conduction equation (HHCE):

\[
\frac{\partial T}{\partial t} + \tau \frac{\partial^2 T}{\partial t^2} = \alpha \Delta T \tag{3}
\]

Where \(\alpha = \frac{k}{\rho c} \), \(\rho \), \(c \), \(\Delta \) are thermal diffusivity, mass density, specific heat capacity and Laplace’s differential operator, respectively. Equation (3) is a hyperbolic partial differential equation and causes the propagation speed, reach a limit amount \(\sqrt{\alpha/\tau} \), in \(\tau > 0 \).

There are a lot of literatures that applied HHCE numerically. Chen and Lin [19] applied a hybrid numerical technique to problem in one spatial dimension. Chen [20] combined the Laplace transform, weighting function scheme and the hyperbolic equation, with a conservation term. Zhou et al. [21] presented a thermal wave model of bioheat transfer, together with a seven-flux model, for light propagation and a rate process equation for tissue damage. Yang [22] applied a forward difference method to solved two-dimensional HHCE. Also, he proved the stable condition for the problem. Saedodin et al. [23] investigated a new analytical and numerical technique to calculate temperature field for a cylinder by using hyperbolic model. A review of the literature indicates that there have been no theoretical approaches for applying non-Fourier heat conduction model in EDM process. In the present paper, an effort has been made to study the numerical expression of temperature field is obtained for a cylindrical workpiece in EDM process. Both non-Fourier and Fourier heat conduction equations have been applied for the cylinder. Using our numerical solution, we performed sample calculation of temperature surfaces and profiles for workpiece.

2 PROBLEM STATEMENT

Due to the random and complex nature of EDM, the following assumptions are made to make the problem mathematically tractable.

2.1. Assumptions
1. The domain is considered as axisymmetric.
2. The workpiece material is homogeneous and isotropic.
3. The material properties of the workpiece are temperature independent.
4. The heat transfer to the workpiece is by conduction.
2.2. Thermal model
Consider a cylinder, as shown as Fig. 1. The heat flux due to EDM spark is applied normally to the upper surface \((Z = L)\) of the cylinder but only for \(r < r_r\).

Some researchers [24-26] have considered uniformly distributed heat source within a spark. This assumption is far from reality. This fact is evidenced from the actual shape of a crater formed during EDM. In the present work, a Gaussian heat flux distribution [27, 28] is assumed. If the maximum intensity at the axis of a spark and its radius are known, then the heat flux \(q(r)\) at radius \(r\) is given by:

\[
q(r) = q_s \exp\left\{-4.5\left(\frac{L}{r_i}\right)^2\right\}
\] (4)

2.2.1. Governing differential equation
For this case, the non-Fourier heat conduction equation without any heat generation, the governing equation can then be expressed as:

\[
\frac{1}{\alpha} \frac{\partial T}{\partial t} + \frac{\tau}{\alpha} \frac{\partial^2 T}{\partial t^2} = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2}
\] (5)

2.2.2. Boundary conditions
Consider the base \((Z = 0)\) surface has been at temperature of dielectric fluid. For this case the boundary conditions are:

\[
\frac{\partial T}{\partial r}(0, z, t) = 0
\] (6a)

\[
k \frac{\partial T}{\partial r}(R, z, t) + h[T(R, z, t) - T_\infty] = 0
\] (6b)

\[
T(r, 0, t) = T_\infty
\] (6c)

\[
k \frac{\partial T}{\partial z}(r, L, t) = \begin{cases} q(r) & r < r_r \\ -h[T(r, L, t) - T_\infty] & r > r_r \end{cases} \text{ for on } -ti
\] (6d)

\[
k \frac{\partial T}{\partial t}(r, L, t) = 0 \text{ for off } -ti.
\]

2.2.3. Initial conditions
Consider the solid initially has been at the temperature of dielectric fluid. Then:

\[
T(r, z, 0) = T_\infty
\] (7)

Hence the initial conditions are:

\[
T(r, z, 0) = T_\infty
\] (8a)

\[
\frac{\partial T}{\partial t}(r, z, 0) = 0
\] (8b)

2.3. Normalization
For convenience of subsequent analysis, we introduce the following dimensionless quantities:

\[
\theta = k \frac{T - T_\infty}{L q}, \quad \xi = \frac{r}{R}, \quad \omega = \frac{z}{L}, \quad Fo = \frac{\alpha t}{L^2},
\]

\[
Ve = \sqrt{\frac{\alpha t}{L^2}}, \quad M = \left(\frac{L}{R}\right)^2, \quad \xi_i = \frac{r}{R}, \quad Bi = \frac{hR}{k}
\] (9)

Where \(\theta\) is dimensionless temperature and \(\xi, \omega\) are dimensionless coordinates. \(Fo\) is the Fourier number, \(Ve\) is the Vernotte number, \(M\) is Square ratio of height to radius of cylinder, \(\xi_i\) is dimensionless radius of heat flux and \(Bi\) is the Biot number. By introducing the dimensionless quantities, the normalized temperature of the cylinder obeys the Eq. (10):
\[V e^2 \frac{\partial^2 \theta}{\partial F o^2} + \frac{\partial \theta}{\partial F o} + M \frac{\partial^2 \theta}{\partial \xi^2} + M \frac{\partial \theta}{\partial \xi} + \frac{\partial^2 \theta}{\partial \omega^2} = 0 \]

(10)

Also, the boundary conditions are:

\[\frac{\partial \theta}{\partial \xi}(0, \omega, F o) = 0 \]

(11a)

\[\frac{\partial \theta}{\partial \xi}(1, \omega, F o) + B i \theta(1, \omega, F o) = 0 \]

(11b)

\[\theta(\xi, 0, F o) = 0 \]

(11c)

\[\frac{\partial \theta}{\partial \omega}(\xi, 1, F o) = \begin{cases} \exp\{-4.5 \left(\frac{\xi}{r_i}\right)^2\} & \text{for on-time} \\ -B i \theta(\xi, 1, F o) & \xi \geq \xi_i, \text{for off-time} \\ 0 & \text{for off-time} \end{cases} \]

(11d)

and the initial conditions are:

\[\frac{\partial \theta}{\partial F o}(\xi, \omega, 0) = 0 \]

(12a)

\[\theta(\xi, \omega, 0) = 0 \]

(12b)

3 NUMERICAL SOLUTION

To solve this problem numerically, Eq. (10) should be discretized. The discretization can be done in many ways, using Finite Element Method (FEM) or Control Volume Method (CVM). In this work we adopted an implicit Finite Difference Method (FDM). In implicit methods, the finite difference approximations of the individual exact partial derivatives in the partial differential equation are evaluated at the solution time level \(n + 1 \). The implicit schemes are unconditionally stable for any \(\alpha = 1 \), but the accuracy of the solution is only first-order in time. A forward difference representation is used for space derivative and the central difference representation is used for space derivative. Therefore Eq. (10) can be discretized as the follows:

\[
Ve^2 \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta F o} + \theta_{i,j}^{n+1} - \theta_{i,j}^{n} = M \left(\frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \xi^2} + \frac{\theta_{i,j}^{n+1} - \theta_{i,j}^{n-1}}{2\xi_{i,j}\Delta \xi} \right)
\]

(13)

Arranging the Eq. (13) gives:

\[
Ve^2 \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta F o} + \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \omega^2} = 0
\]

\[
M \left(\frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \xi^2} + \frac{\theta_{i,j}^{n+1} - \theta_{i,j}^{n-1}}{2\xi_{i,j}\Delta \xi} \right) + \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \omega^2}
\]

(11)

In our treatment, we assume \(\Delta \xi = \Delta \omega \). Hence, Eq. (14) leads to the following difference equation:

\[
Ve^2 \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta F o} + \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \omega^2} = 0
\]

\[
M \left(\frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \xi^2} + \frac{\theta_{i,j}^{n+1} - \theta_{i,j}^{n-1}}{2\xi_{i,j}\Delta \xi} \right) + \frac{\theta_{i,j}^{n+1} - 2\theta_{i,j}^{n} + \theta_{i,j}^{n-1}}{\Delta \omega^2} = 0
\]

(15)

The above system of linear algebraic equations can be written in matrix equation as following:

\[
[A][\theta]^{n+1} = [B][\theta]^{n} + [C][\theta]^{n-1}
\]

(16)

Where \([A]\) is five-diagonal matrix, \([B]\) and \([C]\) are just diagonal matrix.

At the center, \(\xi = 0 \), we have \(\lim_{\xi \rightarrow 0} \frac{\partial \theta}{\partial \xi} = \frac{\partial^2 \theta}{\partial \xi^2} \) by L'Hospital's Rule. Then, Eq. (10) takes the form:

\[
Ve^2 \frac{\partial^2 \theta}{\partial F o^2} + \frac{\partial \theta}{\partial F o} = 2M \frac{\partial^2 \theta}{\partial \xi^2} + \frac{\partial^2 \theta}{\partial \omega^2}
\]

(17)

Hence, Eq. (17) should be discretized for \(\xi = 0 \).

Thanks to inverse method, the dimensionless temperature distribution at each time step can be determined.

As a good comparison, we should solve the same problem with Fourier model. If Fourier’s law holds, i.e. in the limit \(Ve \rightarrow 0 \), the Eq. (10) takes the form:

\[
\frac{\partial \theta}{\partial F o} = M \frac{\partial \theta}{\partial \xi} + \frac{\partial \theta}{\partial \xi} + \frac{\partial \theta}{\partial \omega^2}
\]

(18)

The numerical solution corresponds to the mesh size of \(\Delta \xi = 0.025 \) and \(\Delta F o = 0.001 \)

Detailed flow chart of the numerical solution for the cylinder temperature profile is shown in Fig. 3.

© 2010 IAU, Majlesi Branch
Figures 4 and 5 show the surface temperature profiles for the two cases. It can be perceived from Fig. 4 that, in Fourier model the speed of propagation is infinite. At the moment, all of the workpiece can touch the heat flux. Also, it can be perceived from Fig. 5 that, because of the non-Fourier effect, the heat wave cannot touch the other side of the workpiece at the moment and due to the non-Fourier effects, heat waves can be seen clearly in Fig. 5. As seen in Figs. 4 and 5 the nature of Fourier model and non-Fourier model are completely different and the amount of temperature from these two are not the same. Moreover, these results are in good agreement with another manuscript by Saedodin and Torabi [29].

4 RESULTS AND DISCUSSION

Using our numerical solution, we performed sample temperature surfaces and profiles in the cylinder for the Gaussian type of the heat source. These calculations are obtained for \(\xi_1 = 0.2 \) and \(M = 16 \). The results of calculations are presented in Figs. 4-7.
Figure 6 shows temperature profiles along the \(\omega \) direction at \(Fo = 0.5 \) and \(\xi = 0 \) in cylinder. This Fig. shows that, according the amount of Vernotte number for a specific Fourier number, it is possible that the temperature of different points of workpiece become even lower than initial temperature. This interesting behavior does not appear under the Fourier heat conduction model. It is noticeable that, if Fourier model has been applied, the temperature of all points of the workpiece becomes higher than initial temperature. Also, it can be seen that due to the non-Fourier effects, the temperature of lots of points in the workpiece remain steady for some moments.
5 CONCLUSION

In this paper, the two-dimensional non-Fourier heat conduction model was solved numerically for the cylindrical workpiece in EDM. We concluded that, due to extremely high heat flux during EDM process, calculating the thermal relaxation time is important to predict the temperature of workpiece. Also, it can be seen that, the more the Vernotte number, the more the Fourier number passed for the point that can feel the thermal wave. We also perceived that, the more the Vernotte number, the more the Fourier number needs for the workpiece to reach an equilibrium temperature. Finally, we observed that, applying the Fourier heat conduction model instead of non-Fourier model for predicting the temperature of workpiece during EDM process has significant differences.

REFERENCES

