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a b s t r a c t

Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in
manufacturing processes. This paper presents a novel hybrid intelligent method (HIM) for recognition
of the common types of control chart pattern (CCP). The proposed method includes two main modules:
a clustering module and a classifier module. In the clustering module, the input data is first clustered
by a new technique. This technique is a suitable combination of the modified imperialist competitive
algorithm (MICA) and the K-means algorithm. Then the Euclidean distance of each pattern is computed
from the determined clusters. The classifier module determines the membership of the patterns using
the computed distance. In this module, several neural networks, such as the multilayer perceptron,
probabilistic neural networks, and the radial basis function neural networks, are investigated. Using the
experimental study, we choose the best classifier in order to recognize the CCPs. Simulation results show
that a high recognition accuracy, about 99.65%, is achieved.

© 2011 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Control chart patterns (CCPs) are important statistical process
control tools for determining whether a process is run in its
intended mode or in the presence of unnatural patterns. CCPs can
exhibit six types of pattern: normal (NR), cyclic (CC), increasing
trend (IT), decreasing trend (DT), upward shift (US), and downward
shift (DS) [1]. Except for normal patterns, all other patterns indicate
that the process being monitored is not functioning correctly and
requires adjustment. Fig. 1 shows six pattern types of control chart.

Over the years, numerous supplementary rules known as zone
tests or run tests [2] have been proposed to analyze control
charts. Interpretation of the process data still remains difficult
because it involves pattern recognition tasks. It often relies on
the skill and experience of the quality control personnel to
identify the existence of an unnatural pattern in the process. An
efficient automated control chart pattern (CCP) recognition system
can compensate this gap and ensure consistent and unbiased
interpretation of CCPs, leading to a smaller number of false
alarms and better implementation of control charts. With this
aim, several approaches have been proposed for CCP recognition.
Some of the researchers have used expert systems [2], the fuzzy-
clustering method [3] and decision tree (DT) based classifiers [4].
Other researchers have used artificial neural networks (ANNs) for
recognition of CCPs [5–15]. ANNs can be simply classified into
two main categories: supervised ANNs and unsupervised ANNs. A
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literature review shows that the techniques that use supervised
neural networks as the classifier have higher performances. The
advantage with a neural network is that it does not require the
provision of explicit rules or templates. Most existing techniques
use unprocessed data as the inputs of the CCP recognition system.
The use of unprocessed CCP data has many additional problems,
such as the amount of data to be processed being large. On the
other hand, the approaches which use features are more flexible
to deal with a complex process problem, especially when no prior
information is available. If the features represent the characteristic
of patterns explicitly, and if their components are reproducible
with the process conditions, the classifier recognition accuracywill
increase [15]. Further, if the feature is amenable to reasoning, itwill
help in understanding how a particular decision was made, and
this makes the recognition process a transparent process. Features
could be obtained in various forms, including principal component
analysis shape features [11,13], correlation between the input
and various reference vectors [16], and statistical correlation
coefficients [17].

This paper presents a novel hybrid intelligent method (HIM)
for recognition of the common types of control chart pattern. The
proposedmethod includes twomainmodules: a clusteringmodule
and a classifier module. In the clustering module, the input data
is first clustered by a new technique. This technique is a suitable
combination of the modified imperialist competitive algorithm
(MICA) and the K -means algorithm. Then the Euclidean distance of
each pattern is computed from the determined clusters. It is used
as the characteristic feature. The classifier module determines the
membership of the patterns using the computed distance.

The rest of paper is organized as follows. Section 2 explains
the general scheme of the proposed method. Sections 3 and 4

ed.
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Fig. 1. Six various basic patterns of control charts: (a) normal pattern, (b) cyclic pattern, (c) upward trend, (d) downward trend, (e) upward shift, and (f) downward shift.
Fig. 2. General scheme of the proposed method.

describe themain parts of the proposedmethod, i.e., the clustering
technique and classifier module, respectively. Section 5 shows
some simulation results, and Section 6 concludes the paper.

2. General structure of the proposed method

The proposed method includes two main modules: a clustering
module and a classifier module. Fig. 2 shows the general scheme
of this method. In the clustering module, the input data is
first clustered by a new technique. This technique is a suitable
combination of the modified imperialist competitive algorithm
(MICA) and the K -means algorithm. It is named the K-MICA
clustering technique. Then the Euclidean distance of each pattern
is computed from the determined clusters. It is used as the
characteristic feature. It is obvious that the Euclidean distance of
each signal from its own cluster center is smaller than the value
of Euclidean distance of that signal from other cluster centers.
Subsequently, each signal is shown as a 1 × 6 vector, in which
one of the rows has a small value and the remaining rows have a
large value. Application of this approach causes the dimension of
the classifier to be decreased. Also, we have amore efficient feature
that is better than the raw data. The classifier module determines
the membership of the patterns using the computed distance. The
following sections present the main modules.

3. K-MICA clustering technique

Clustering is an important problem that must often be solved
as a part of more complicated tasks in pattern recognition, image
analysis, and other fields of science and engineering. Clustering
procedures partition a set of objects into clusters such that objects
in the same cluster are more similar to each other than objects
in different clusters, according to some predefined criteria. In this
section, the applied clustering algorithm is described.
3.1. K-means

K -means is one of the simplest unsupervised learning algo-
rithms. The procedure follows a simple and easy way to classify a
given data set through a certain number of clusters (assume K clus-
ters) fixed a priori. The main idea is to determine the K centroids.
These centroids should be placed in a cunning way, as different lo-
cations cause different results. So, the best choice is to place them
as far away from each other as possible. The next step is to take
each point referring to a given data set and associate it to the near-
est centroid. When no point remains, the first step is completed,
and an early grouping is done. At this point, we need to recalculate
the K new centroids as centers of the clusters resulting from the
previous step. After we have these K new centroids, a new binding
has to be done between the same data set points and the nearest
new centroid. A loop has been generated. As a result of this loop,
we may notice that the K centroids change their location step by
step until nomore changes aremade. In other words, the centroids
do not move any further. Finally, the goal of this algorithm is to
minimize an objective function, which in this case is a squared er-
ror function [18,19]. The objective function has been calculated as
follows:

cos t(X) =

N−
i=1

min{‖Yi − Xi‖}, j = 1, 2, 3, . . . , k (1)

where ‖Yi −Xi‖ is a chosen distance measurement between a data
input Yi and the cluster center Xi. N and K are the number of input
data and the number of cluster centers, respectively.

The algorithm is composed of the following steps.
1. Place the K points into the space represented by the objects that

are clustered. These points represent initial group centroids.
2. Assign each object to the group that has the closest centroid.
3. When all objects have been assigned, recalculate the positions

of the K centroids.
4. Repeat Steps 2 and 3 until the centroids are immobilized.

Although it can be proved that the procedure will always
terminate, the k-means algorithm does not necessarily find the
most optimal configuration, corresponding to the global objective
function minimum. The algorithm is also significantly sensitive
to the initial randomly selected cluster centres. The k-means
algorithm can be run multiple times to reduce this effect.

3.2. The imperialist competitive algorithm (ICA)

The imperialist competitive algorithm (ICA) is a population-
based stochastic search algorithm. It was introduced by Atashpaz
and Lucas [20,21]. Since then, it has been used to solve some
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Fig. 3. Generating the initial empire.

Fig. 4. Moving colonies toward their relevant imperialist.

kinds of optimization problem. The algorithm is inspired by
imperialistic competition. It attempts to present the social policy
of imperialisms to control more countries and use their sources
when colonies are dominated by some rules. If one empire loses
its power, the others will compete to take possession of it. In the
ICA, this process is simulated by individuals that are known as
countries.

This algorithm starts with a randomly initial population and
objective functionwhich is computed for them. Themost powerful
countries are selected as imperialists and the others are colonies of
these imperialists. Then a competition between imperialists takes
place to get more colonies. The best imperialist has more chance
to possess more colonies. Then one imperialist with its colonies
makes an empire. Fig. 3 shows the initial populations of each
empire [20–22]. If the empire is bigger, its colonies are greater and
the weaker ones are less. In this figure, Imperialist 1 is the most
powerful and has the greatest number of colonies.

After dividing the colonies between the imperialists, these
colonies approach their related imperialist countries. Fig. 4 repre-
sents this movement. Based on this concept, each colony moves
toward the imperialist by α units and reaches its new position.
α ≈ U(0, β × S). (2)
Here, α is a random variable with uniform (or any proper) distri-
bution; β , a number greater than 1, causes colonies move toward
their imperialists from different direction, and S is the distance be-
tween the colony and imperialist.

If after this movement one of the colonies possess more power
than its relevant imperialist, they will exchange their positions.
To begin the competition between empires, the total objective
function of each empire should be calculated. It depends on the
objective function of both the imperialist and its colonies. Then the
competition starts: the weakest empire loses its possessions and
powerful empires try to gain them. An empire that has lost all its
colonies will collapse. Finally, the most powerful empire will take
possession of other empires, and it wins the competition.

To apply the ICA for clustering, the following steps have to be
taken [22].
Step 1: The initial population for each empire should be generated
randomly.

Step 2: Move the colonies toward their relevant imperialist.
Step 3: Exchange the position of a colony and the imperialist if its

cost is lower.
Step 4: Compute the objective function of all empires.
Step 5: Pick the weakest colony and give it to one of the best

empires.
Step 6: Eliminate the powerless empires.
Step 7: If there is just one empire, stop; if not, go to 2.

The last imperialist is the solution of the problem.

3.3. Modified ICA (MICA)

In order to improve the convergence velocity and accuracy
of the ICA, [23] recommends a modified imperialist competitive
algorithm (MICA). Premature convergence may occur under
different situations: the population converges to local optima of
the objective function or the search algorithm proceeds slowly
or does not proceed at all. In [23], a new mutation operator is
proposed. Mutation is a powerful strategy which diversifies the
ICA population and improves the ICA’s performance by preventing
premature convergence to local minima. During the assimilation
policy, each colony (X) moves toward its relevant imperialist by
a unit, where the initial distance between them is S. The new
position of each colonywould be X t+1

move,j (t is the iteration number):

α ∼= U(0, β × S) (3)
X t+1
move,j = X t

j + α,

where X t
j and X t+1

move,j are the jth colony of each empire. After this
movement for each colony X , a mutant colony X t+1

mut is generated as
follows:

X t+1
mut,j = X t

m1 + rand(.) × (X t
m2 − X t

m3) (4)
Xmut,j = [Xmut,1, Xmut,2, . . . , Xmut,b]1×b, b = k × d.

Then the selected colony would be

X t+1
new,j = [Xnew,1, Xnew,2, . . . , Xnew,b]1×b

Xnew,z =


Xmut,z if rand(.) < γ
Xz otherwise, z = 1, 2, . . . , b, (5)

where rand(.) is a random number between 0 and 1, and γ is a
number less than 1. m1,m2,m3 are three individuals which are
selected from initial colonies randomly. In order to cover the entire
colonies uniformly, it is better to select them asm1 ≠ m2 ≠ m3 ≠

j. k is the number of clusters, and the dimension of each cluster
center will be d. To choose the best colony between Xmove,j and
Xnew,j to replace the jth colony (Xj), an objective function is used:

X t+1
j =


X t+1
move,j if cost(X t+1

move,j) ≤ cost(X t+1
new,j)

X t+1
new,j otherwise.

(6)

3.4. Hybrid K-MICA

Asmentioned before,K -means is used for its ease and simplicity
for applications. However, it has some drawbacks. First, its result
may depend on the initial values. Also, it may converge to a local
minimum. Recently, numerous ideas have been used to alleviate
this drawback by using global optimization algorithms such as the
genetic algorithm (GA) [24], hybrid PSO-SA [25], hybrid PSO-ACO-
K [26], and HBMO [27]. In this study, we used a method that was
given in [23], called the hybrid K-MICA. According to the original
ICA, first a primary population is generated and then empires with
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Fig. 5. Pseudo-code of the K-MICA algorithm.

their possessions appear. Applying K -means to each empire causes
us to improve the initial population of colonies. Itmakes the hybrid
algorithm converge more quickly and prevents it from falling into
local optima. The outputs of K -means form the initial empires of
the modified ICA.

To improve the outcome of the algorithm, it is better that a
powerless imperialist is not removedwhen it loses all possessions.
This imperialist is one of the best answers, and it can contribute in
imperialistic competition as a weak colony or as one to be given to
a powerful empire. The pseudo-code of this algorithm is shown in
Fig. 5.

To apply the ICA for clustering, the following steps have to be
taken [23].

Step 1: Generate an initial population.
An initial population of input data is generated by chaos initial-

ization as follows:

Population =

 X1
X2
. . .

XNinitial


Xi = Countryi = [center1, center2, . . . , centerk]

i = 1, 2, . . . ,Ninitial (7)
centerj = [x1, x2, . . . , xd] j = 1, 2, . . . , k
H = k × d
X0 = [X1

0 , X2
0 , . . . , XH

0 ]

xj0 = rand(.) × (xjmax − xjmin) + xjmin, j = 1, 2, . . . ,H

Xi = [x1i , x
2
i , . . . , x

H
i ], i = 1, 2, . . . ,Ninitial

xji = 4 × xji−1 × (1 − xji−1), j = 1, 2, . . . ,H

xmin
j < xj < xmax

j ,

where centerj is the jth cluster center for the ith country.Xi is one of
the countries. Ninitial is the population number and d is the dimen-
sion of each cluster center. xmax

j and xmin
j (each feature of center)

are the maximum and minimum value of each point referring to
the jth cluster center, which are in order. k is the number of clus-
ters. H is the number of state variables. X0 is an initial solution.
Step 2: Calculate the objective function value.

Suppose that we have N sample feature vectors. The objective
function is evaluated for each country as follows:

Step 2-1: i = 1 and Objec = 0.
Step 2-2: select the ith sample.
Step 2-3: calculate the distances between the ith sample and

centerj(j = 1, 2, . . . , K).
Step 2-4: add the value of Objec with the minimum distance

calculated in Step 2-3.

(Objec = Objec + min(|centeri − Ym| , i = 1, 2, . . . , K)).

Step 2-5: if all samples have been selected, go to the next step,
otherwise i = i + 1 and return to step 2-2.

Step 2-6: cost(X) = Objec.
The objective function is calculated mathematically as below:

cost(X) =

N−
m=1

min(|centeri − Ym| , i = 1, 2, . . . , K). (8)

Step 3: Sort the initial population based on the objective function
values.

The initial population is increased based on the value of the
objective function.
Step 4: Select the imperialist states.

Countries that have the minimum objective function are se-
lected as the imperialist states and the remaining ones form the
colonies of these imperialists.
Step 5: Divide the colonies among the imperialists.

Based on the power of each imperialist the colonies are divided
among them. The power of each imperialist is calculated as follows.

Cn = max {cost} − costn (9)

Pn =


Cn

Nimp∑
i=1

Ci

 (10)

Cnorm
n = round(Pn(Ncol)). (11)

In the above equations, costn is the cost of the nth imperialist and
Cn the normalized cost of each one. The normalized power of each
imperialist is introduced as Pn; then the initial number of colonies
for each empire will be Cnorm

n , where Ncol and Nimp are the total
numbers of colonies and imperialists.
Step 6: Use the K -means algorithm for each empire.
Step 7: Move colonies toward their imperialist states as described
in Section 3.
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Step 8: Use mutation to change the direction of colonies. This is
mentioned in modified ICA.
Step 9: Check the cost of all colonies in each empire.

During the previous steps, the cost of each colony might have
changed. Check the cost of all colonies of an empire. If there is one
that has a lower cost than its relevant imperialist, exchange their
positions.
Step 10: Check the total cost of each empire.

The cost of each empire depends on the power of both the
imperialist and its colonies. It is calculated as follows:

TCn = cost(imperialistn)

+ ξmean {cost(colonies of empiren)} . (12)

TCn is the total cost of the nth empire, and ξ is an attenuation
coefficient between 0 and 1 to reduce the effect of the cost of the
colonies.
Step 11: Perform an imperialistic competition.

All empires, according their power (total cost), try to get the
colonies of the weakest empire.

TCnorm
n = max {TCi} − TCn (13)

PPn =


TCnorm

n
Nimp∑
i=1

TCnorm
i

 , (14)

where TCnorm
n is the normalized total cost of the nth empire and the

possession probability of each empire is PPn .
A roulette wheel can be used for stochastic selection of the

winning empire which will dominate the weakest colony of the
weakest empire. To perform the roulette wheel algorithm, it is
necessary to calculate the cumulative probability as follows:

CPn =

n−
i=1

PPn .

According to this equation, the cumulative probability for n = 1
is equal to its probability, while for the last n it corresponds to 1.

Then a random number with uniform distribution is generated
and compared with all CPn .

Each sector with higher probability will havemore chance to be
chosen. Therefore the winner empire will specify.

As mentioned, to use the roulette wheel algorithm, computing
the cumulative distribution function is essential. To reduce this
time-consuming step an approach has been presented as follows:

P = [PP1 , PP2 , . . . , PPNimp
] (15)

R = [r1, r2, . . . , rNimp ] r1, r2, . . . , rNimp ≈ U(0, 1) (16)

D = P − R = [D1,D2, . . . ,DNimp ]

= [PP1 − r1, PP2 − r2, . . . , PPNimp
− rNimp ], (17)

where P is the vector of possession probability of all empires
and R is a vector with uniformly distributed random numbers.
The maximum index in D shows the winner empire that gets the
colony.

After realizing the winner empire, the weakest colony of the
weakest empire will be given to the winner empire. Then we
should subtract one of the populations of this weak empire and
add one to the winner’s population.
Step 12: Remove the weakest empire.

If there is any empire without a colony, eliminate it. Replace
one of the weakest colonies of the best empire (low cost) with this
imperialist.
Step 13: Apply chaotic local search (CLS) to search around the
global solution. The ICA has gainedmuch attention andwidespread
applications in different fields. However, it often converges to local
optima. In order to avoid this shortcoming, a CLS algorithm is used
to search around the global solution in this study. CLS is based on
the logistic equation as follows:

Cxi = [Cx1i , Cx
2
i , . . . , Cx

H
i ]1×H , i = 0, 1, 2, . . . ,Nchaos (18)

Cxii+1 = 4 × Cxji × (1 − Cxji), j = 1, 2, . . . ,H

Cxj0 = rand(.)

Cxji

∫
[0, 1], Cxj0 ∉ {0.25, 0.5, 0.75} .

In the CLS, the best solution is considered as an initial solution
X0
ds for the CLS. X0

cls is scaled into (0, 1) according to the following
equation:

X0
cls = [X1

ds,0, X
2
ds,0, . . . , X

H
cls,0]1×H (19)

Cx = [Cx10, Cx
2
0, . . . , Cx

H
0 ]

Cxj0 =
xjcls,0 − xjmin

xjmax − xjmin

, j = 1, 2, . . . ,H.

The chaos population for CLS is generated as follows:

X i
cls = [X1

cls,i, X
2
cls,i, . . . , X

H
cls,i]1×H , i = 1, 2, . . . ,Nchaos (20)

xjcls,i = cxji−1 × (xjmax − xjmin) + xjmin, j = 1, 2, . . . ,H

where cxji indicates the jth chaotic variable, and Nchaos is the
number of individuals for th CLS. rand(.) is a random number
between 0 and 1.

The objective function is evaluated for all individuals of the CLS.
One country selected randomly is replaced with the best solution
among them.
Step 14: Check the number of empires.

If there is just one empire remaining, stop. Else go to step 7.

4. Classifiers

This section briefly describes the neural network classifiers.

4.1. Multi-layer perceptron (MLP) neural networks

An MLP neural network consists of an input layer (of source
nodes), one or more hidden layers (of computation nodes),
and an output layer. The recognition basically consists of two
phases: training and testing. In the training stage, weights are
calculated according to the chosen learning algorithm. The issue
of the learning algorithm and its speed is very important for the
MLP model. In this study, the following learning algorithms are
considered.

4.1.1. Back-propagation with momentum (BP with momentum)
algorithm

The BP algorithmmakes use of gradient descentwith amomen-
tum term to smooth out oscillation [28]. Eq. (21) gives the weight
update for BP with momentum:

1Wij(t + 1) = −ε
δE

δWij
(t) + µ

δE
δWij

(t − 1), (21)

where wij represents the weight value from neuron j to neuron i, ε
is the learning rate parameter, and E represents the error function.
It adds an extra momentum parameter, µ, to the weight changes.
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4.1.2. Resilient back-propagation (RPROP) algorithm
The RPROP algorithm considers the sign of derivatives as the

indication for the direction of the weight update [29]. In doing so,
the size of the partial derivative does not influence theweight step.
The following equation shows the adaptation of the update values
of ∆ij (weight changes) for the RPROP algorithm. For initialization,
all are set to small positive values:

∆ij(t) =


η+

× ∆ij(t − 1); if
δE

δWij
(t − 1)

δE
δWij

(t) > 0

η−
× ∆ij(t − 1); if

δE
δWij

(t − 1)
δE

δWij
(t) < 0

η0
× ∆ij(t − 1); otherwise,

(22)

where η0
= 0, 0 < η− < 1 < η+, η−,0,+ are known as

the update factors. Whenever the derivative of the corresponding
weight changes its sign, this implies that the previous update
value is too large and it has skipped a minimum. Therefore, the
update value is then reduced (η−), as shown above. However, if the
derivative retains its sign, the update value is increased (η+). This
will help to accelerate convergence in shallow areas. To avoid over-
acceleration, in the epoch following the application of (η+), the
new update value is neither increased nor decreased (η0) from the
previous one. Note that the values of ∆ij remain non-negative in
every epoch. This update value adaptation process is then followed
by the actual weight update process, which is governed by the
following equations:

1Wij(t) =


−∆ij; if

δE
δWij

(t) > 0

+∆ij; if
δE

δWij
(t) < 0

0; otherwise.

(23)

The values of the training parameters adopted for the algorithms
were determined empirically. They were η−

= .05, η+
= 1.2.

4.2. Radial basis function neural networks (RBFNNs)

RBF neural networks with their structural simplicity and
training efficiency are a good candidate to perform a nonlinear
mapping between the input and the output vector space. The
RBFNN is fully connected feed forward structure and it consists
of three layers, namely, an input layer, a single layer of nonlinear
processing units, and an output layer. The input layer is composed
of input nodes that are equal to the dimension of the input vector
x. The output of the jth hidden neuron with Gaussian transfer
function can be calculated as

hj = exp(−‖x − cj‖2/σ 2), (24)

where hj is the output of the jth neuron, x ∈ ℜ
n×1 is an input

vector, cj ∈ ℜ
n×1 is the jth RBF center, σ is the center spread

parameter, which controls thewidth of the RBF, and ‖.‖2 represent
the Euclidean norm. The output of any neuron at the output layer
of the RBF network is calculated as

yi =

k−
j=1

wijhj, (25)

where wij is the weight connecting hidden neuron j to output
neuron i and k is the number of hidden layer neurons.
Table 1
K-MICA parameters for clustering.

Parameter Value

Npop 50
Nimp 12
γ 0.4
ζ 0.1
β 20
Maximum number of iterations 100

4.3. Probabilistic neural networks (PNNs)

A probabilistic neural network (PNN) is a kind of radial basis
network suitable for classification problems. PNNs have three
layers: input, pattern, and summation. The input layer has asmany
elements as there are individual parameters needed to describe
the samples to be classified [30]. The pattern layer organizes the
training set in such a way that an individual processing element
represents each input vector. The pattern units in the probabilistic
network are used to store pattern examples, taken directly from
the training data. The entire set of training data is used, and so the
number of units in the first hidden layer is set equal to the number
of training cases. The summation layer has as many processing
elements as there are classes to be recognized, and simply collects
the outputs from all hidden neurons of each respective class. The
products of the summation layer are forwarded to the output (one
neuron for each data class), where the estimated probability of the
new pattern being a member of that data class is computed. The
transfer function is a radial basis function for the first layer and is
a competitive function for the second layer. Only the first layer has
biases. Training of the probabilistic neural network is much easier
than with back-propagation. It can be simply finished by setting
the weights of the network using the training set. The outputs of
summary layer are binary values. If yi is larger than input of other
neurons (which means that this input pattern belongs to class i), yi
is set to 1, otherwise it is set to zero.

5. Simulation results

In this section, the performance of the proposed recognizer is
evaluated. For this purpose, we have used practical and real-world
data [31]. This dataset contains 600 examples of control charts. For
this study, we have used 60% of the data for training the classifier
and the rest for testing. The easiest way to assess the performance
rate is to choose a test set independent of the training set and
validation set to classify its examples, count the examples that have
been correctly classified, and divide by the size of the test set. The
proportion of test-set examples that are classified correctly to the
total samples estimates the performance of the recognizer for each
pattern. In order to obtain the recognition accuracy (RA) of system,
one needs to compute the average value of the performances of the
CCPs.

We apply the K-MICA for finding the optimum cluster centers.
The parameters of the clustering algorithm used in this study
are shown in Table 1. These values were selected for the best
performance after several experiments.

As an example, patterns’ Euclidean distance of signals from
cluster center 2 (normal pattern) is shown in Fig. 6. The horizontal
axis shows the number of signals and the vertical axis shows the
Euclidean distance of signals from cluster center 2. As shown in the
figure, the normal pattern signals have smaller values due to other
signals.
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Fig. 6. Euclidean distance of signals from cluster center 2.

Table 2
MLP architecture and training parameters.

Number of layers 2
Number of output neurons 6
Learning algorithm Resilient back-propagation

Back-propagation with momentum
The initial weights and basis Random
Activation function (RP) Tangent-sigmoid

Linear

Table 3
Performance comparisons of different classifiers with row data.

Classifier Parameter RA (%)

MLP (RP) NNHL = 20 93.81
MLP (with momentum) NNHL = 10 93.57
RBFNN Spread = 2 95.33
PNN Spread = 5 93.75

Table 4
Performance comparisons of different classifiers with Euclidean distance of signals
from cluster center.

Classifier Parameter RA (%)

MLP (RP) NNHL = 20 99.65
MLP (with momentum) NNHL = 30 99.23
RBFNN Spread = 7 99.53
PNN Spread = 3 96.42

5.1. Performance comparison of different neural network and pro-
posed features

The training parameters and the configuration of the MLP
used in this study are shown in Table 2. The MLP classifiers
were tested with various neurons for a single hidden layer, and
the best networks were selected. For the PNN and RBFNN, a
Gaussian activation function and a single hidden layer with 360
neurons were considered. These values were selected for the best
performance after several experiments.

Tables 3 and 4 show the recognition accuracy (RA) of different
systems. In these tables, NNHL means the number neurons in
the hidden layers. The obtained results are the average of 10
Table 6
Comparison of the effect of the clustering algorithm.

Classifier Clustering algorithm RA (%)

MLP-RP GA 98.6
MLP-RP FCM 97.2
MLP-RP KMC 97.3
MLP-BP with momentum GA 99.04
MLP-BP with momentum FCM 97.18
MLP-BP with momentum KMC 97.74
RBF GA 98.73
RBF FCM 97.85
RBF KMC 97.44
PNN GA 96.7
PNN FCM 93.9
PNN KMC 92.4

Table 7
Recognition accuracy of the recognizer for different values of parameters.

Case Npop Nimp β ξ γ Classifier RA (%)

1 50 12 25 0.5 0.6 MLP(RP) 99.54
2 50 10 25 0.1 0.4 MLP(RP) 99.55
3 50 8 25 0.05 0.2 MLP(RP) 99.60
4 50 12 20 0.1 0.4 MLP(RP) 99.65
5 50 10 20 0.5 0.8 MLP(RP) 99.51
6 50 8 20 0.05 0.6 MLP(RP) 99.61
7 50 10 15 0.5 0.8 MLP(RP) 99.56
8 50 8 15 0.05 0.4 MLP(RP) 99.63
9 50 10 10 0.1 0.8 MLP(RP) 99.60

10 50 8 10 0.05 0.6 MLP(RP) 99.62

independent runs. As depicted in Table 3, using various neural
networks and unprocessed data (raw data), the highest accuracy is
95.33%,which is achieved by the RBF neural network. FromTable 4,
it can be found that, by using the proposed features as the input of
the classifier, the accuracy of the system is increased to 99.65%. This
accuracy value is achieved by the MLP neural network with the RP
learning algorithm.

A comparison between Tables 3 and 4 shows the efficiency of
the proposed feature. As can be recognized from these tables, the
accuracy of MLP (RP), MLP (momentum), the PNN, and the RBF
neural network, are increased to 99.65%, 99.23%, 99.53%, 96.42%,
respectively, which shows the significant role of the feature in
classifier performance.

In order to indicate the details of the recognition for each pat-
tern, the confusion matrix of the recognizer without optimization
is shown in Table 5. As we know, the values in the diagonal of the
confusion matrix show the correct performance of the recognizer
for each pattern. In other words, these values show how many of
considered patterns are recognized correctly by the system. The
other values show themistakes of the system. For example, look at
the third rowof thismatrix. The value of 97.90% shows the percent-
age of correct recognition of upward trend patterns and the value
of 2.10% shows that this type of pattern is wrongly recognized as
upward shift patterns. In order to obtain the recognition accuracy
(RA) of the system, it is needed to compute the average value that
will be appeared in the diagonal of the confusion matrix.
Table 5
Confusion matrix for best result.

Normal Cyclic Upward trend Downward trend Upward shift Downward shift

Normal 100% 0 0 0 0 0
Cyclic 0 100% 0 0 0 0
Upward trend 0 0 97.9% 0 2.1% 0
Downward trend 0 0 0 100% 0 0
Upward shift 0 0 0 0 100% 0
Downward shift 0 0 0 0 0 100%
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Table 8
A summary of different classification algorithms together with their reported results used measures of the accuracy.

Ref. no Number of CCP types Input Classifier Total recognition accuracy (%)

[5] 6 Unprocessed data MLP(RSFM) 97.46
[6] 6 Unprocessed data MLP 94.30
[7] 6 Unprocessed data PNN 95.58
[8] 6 Unprocessed data MLP 93.73
[9] 6 Unprocessed data LVQ 97.7
[35] 4 Unprocessed data MLP(SPA) 96.38
This work 6 Euclidean distance MLP 99.65
5.2. Performance comparison of different clustering algorithms

The performance of the classifiers has been compared with
different clustering algorithms. For this purpose, fuzzy C-mean
clustering [32,33], K -mean clustering [18,19], and genetic algo-
rithm clustering [34] are considered. Table 6 shows the RA of
different systems. From Tables 4 and 6, it can be seen that the
K-MICA clustering based system achieves higher recognition ac-
curacy, 99.65%.

5.3. Effects of the K-MICA parameters on the performance of the
method

In this subsection, we report the sensitivity of the recognition
system with respect to Nimp,Npop, βξ , and γ , which control the
behavior, and thus the goodness of the K-MICA search process. The
results obtained for 10 sets of parameters are shown in Table 7. To
investigate the influence of the parameters in each case, the neural
network is tested 10 times independently with various numbers of
neurons in the hidden layer. The average of the best obtained value
is given in the table. It illustrates that this hybrid system has a little
dependency on variation of the parameters.

5.4. Comparison of the proposed method (HIM) with other methods
in the literature

Several researchers in the past have addressed arrhythmia
detection and the classification problem using the CCP signals
directly or by analyzing the pattern rate variability signal. Direct
comparison with other works is difficult for control chart pattern
recognition problems. This is mainly because of the fact that there
is no single unified data set available. A different setup of patterns
(for example, the number of training and testing samples and the
number of patterns) will lead to different performance. Besides,
there are many different kinds of benchmarking system used
for system quality. This causes difficulties for direct numerical
comparison. Table 8 compares the differentmethods in case of: the
recognition accuracy, the used classifier and the used inputs.

As for neural network-based CCP recognizers, Le et al. [5]
introduced a new ANN model, and their numerical simulations
showed that this model has a recognition accuracy of about
97.46% for recognition of six types of CCP. Pham and Oztemel [6]
reported a generalization rate of 94.30%. Cheng and Ma [7] have
gained recognition accuracy (RA) of about 95.58%. However, the
performance for lower patterns is reported to be less than 90%.
The proposed method in [8] reached a RA of about 93.73% of
classification accuracy for recognition of six types of CCP. In [9], the
authors used an LVQ neural network and achieved an RA of about
97.70%. In [35], Guh and Tannock proposed a sequential pattern
analysis method and reported a classification rate of about 96.38%.
Compared to these papers, an effective system is proposed in the
current work which provides a better accuracy over a wider range
of different types of CCP (six different classes).
6. Conclusion

Accurate recognition of control chart patterns (CCPs) is
very important for producing high-quality products. This study
investigated the design of an accurate system for automatic
recognition of CCPs. Here the usage of the Euclidean distance
of the patterns from the cluster centers is proposed as the
efficient features. For extraction of these features we have used a
combination of the K -means algorithm and modified imperialist
competitive algorithm (MICA). This algorithm is named as K-MICA.
The extracted features are applied to the different types of the
neural networks. Simulations result show that the MLP neural
network with RP learning algorithm has the highest rate of the
recognition accuracy (RA). This RA is about 99.65%.
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