
This article was downloaded by: [Texas A&M University Libraries and your student fees]
On: 29 March 2012, At: 19:15
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production Research
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tprs20

Integrated process planning and scheduling using an
imperialist competitive algorithm
Kunlei Lian a , Chaoyong Zhang a , Liang Gao a & Xinyu Li a
a State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong
University of Science and Technology, Wuhan, Hubei, China

Available online: 02 Nov 2011

To cite this article: Kunlei Lian, Chaoyong Zhang, Liang Gao & Xinyu Li (2011): Integrated process planning and scheduling
using an imperialist competitive algorithm, International Journal of Production Research, DOI:10.1080/00207543.2011.622310

To link to this article: http://dx.doi.org/10.1080/00207543.2011.622310

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tprs20
http://dx.doi.org/10.1080/00207543.2011.622310
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Production Research
2011, 1–18, iFirst

Integrated process planning and scheduling using an imperialist competitive algorithm

Kunlei Lian, Chaoyong Zhang*, Liang Gao and Xinyu Li

State Key Laboratory of Digital Manufacturing Equipment & Technology, Huazhong University of Science
and Technology, Wuhan, Hubei, China

(Received 9 January 2011; final version received 5 August 2011)

Effective performance of modern manufacturing systems requires integrating process planning and scheduling
more tightly, which is consistently challenged by the intrinsic interrelation and intractability of these two
problems. Traditionally, these two problems are treated sequentially or separately. Integration of process
planning and scheduling (IPPS) provides a valuable approach to improve system performance. However,
IPPS is more complex than job shop scheduling or process planning. IPPS is strongly NP-hard in that,
compared to an NP-hard job shop scheduling problem with a determined process plan, the process plan for
each job in IPPS is also to be optimised. So, an imperialist competitive algorithm (ICA) is proposed to address
the IPPS problem with an objective of makespan minimisation. An extended operation-based representation
scheme is presented to include information on various flexibilities of process planning with respect to
determined job shop scheduling. The main steps of the proposed ICA, including empires construction,
assimilation, imperialistic competition, revolution and elimination, are elaborated using an illustrative
example. Performance of the proposed ICA was evaluated on four sets of experiments taken from the
literature. Computational results of the ICA were compared with that of some existing algorithms developed
for IPPS, which validates the efficiency and effectiveness of the ICA in solving the IPPS problem.

Keywords: imperialist competitive algorithm; integrated process planning and scheduling; scheduling

1. Introduction

Process planning and scheduling are two important functions in manufacturing systems. Both of them involve
assignment of resources. Process planning links computer aided design and computer aided manufacturing by
specifying resources needed to produce a part and determining detailed instructions for transforming rawmaterials into
the final product. Scheduling is the act of assigning operations of all the jobs on available machines with precedence
relationships among operations satisfied to optimise some predefined objectives. In traditional approaches, process
planning and scheduling are conducted sequentially or separately, where scheduling of jobs is performed after the
process plan for each job has been generated. These approaches suffer from the following problems (Li et al. 2010a).

(1) Traditional job shop scheduling with predetermined process plans limits the flexibility of the manufacturing
system to adapt to dynamic changes of shop status.

(2) Process planning without consideration of actual job shop status may lead the process planners to choose
desirable machining resources for each job, which usually results in unbalanced resource loads.

(3) Process plans generated separately may become infeasible in scheduling processes because of dynamic
changes of shop floor status.

(4) Optimisation objectives of process planning and scheduling are usually different. Conflicting problems may
occur if there is no appropriate consideration and coordination.

To overcome these problems, it is necessary to integrate process planning and scheduling more tightly. In recent
years, integrated process planning and scheduling (IPPS) has attracted more and more attention, and numerous
efforts have been made to research applications of the IPPS system. Among the approaches proposed in the past few
years, the three best known approaches (Baykasoğlu and Özbak|r 2009) are stated below.

(1) Nonlinear process planning (NLPP). In NLPP, all possible process plans for a part are generated and ranked
according to certain criteria. Then, the scheduling function repeatedly selects a process plan until a suitable
plan is found for each part.

*Corresponding author. Email: zcyhust@mail.hust.edu.cn

ISSN 0020–7543 print/ISSN 1366–588X online

� 2011 Taylor & Francis

http://dx.doi.org/10.1080/00207543.2011.622310

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

(2) Closed loop process planning (CLPP). CLPP differs from NLPP in that it introduces a dynamic feedback

process. In CLPP, scheduling process gives information of availability of machine resources to process

planning processes based on the status of shop floor.
(3) Distributed process planning (DPP). Process planning in DPP is divided into two phases. In the first phase,

machining features and their relationships are analysed, and corresponding manufacturing processes are

determined. In the second phase, final process plans are generated based on the negotiation of required job

operations and available manufacturing resources. The detailed process plans and scheduling plans are

obtained simultaneously.

Due to their advantages in solving combinatorial optimisation problems, metaheuristic algorithms, including the

genetic algorithm (GA), the simulated annealing (SA), particle swarm optimisation (PSO), ant colony optimisation

(ACO) and the evolutionary algorithm (EA), have been applied to the IPPS problem in the past few years. Tan and

Khoshnevis (2000), Li et al. (2010b) and Phanden et al. (2011) have separately presented a review on IPPS. Morad

and Zalzala (1999) suggested a GA approach by simultaneously considering processing capabilities of machines,

processing costs with the scheduling of jobs. Lee and Kim (2001) implemented a simulation-based GA where a

simulation module was integrated to compute performance measures. Zhang et al. (2003) reported a unique method

for IPPS in a batch-manufacturing environment. Li and McMahon (2007) presented an adaptive SA algorithm to

optimise makespan, machine utilisation, job tardiness and manufacturing costs in an IPPS system. Guo et al.

(2009a) proposed a PSO application to the optimisation of IPPS problems. New operators were incorporated into

the basic PSO approach to optimise multiple criteria, including makespan, total job tardiness and balanced level of

machine utilisation. Girish and Jawahar (2009) addressed the job shop scheduling problem (JSP) associated with

multiple job routings and two metaheuristic algorithms, namely, the GA and ACO, were employed to find the

optimal allocation of operations to the machines for minimum makespan criterion. Wang et al. (2009) presented a

dynamic approach to reduce tardy jobs through the IPPS in a batch-manufacturing environment. Cai et al. (2009)

proposed a cross-machine setup planning approach using GAs for machines with different configurations. Leung

et al. (2010) utilised an ACO algorithm in an agent-based system to integrate process planning and shop floor

scheduling. In their proposed approach, artificial ants were implemented as software agents, and a graph-based

solution method was proposed. Shao et al. (2009) modified the GA to facilitate the integration and optimisation of

process planning and scheduling. Li et al. (2010a) presented a mathematical model and an EA-based approach for

the IPPS problem. Li et al. (2010c) proposed a hybrid algorithm to address the IPPS problem where tabu search

(TS) was used as a local search strategy to improve the GA’s search capability. Agent-based approaches were also

proposed by some researchers to solve the IPPS problem (Wong et al. 2006a, 2006b, Zattar et al. 2010, Nejad et al.

2011). Weiming et al. (2006) presented a review that was focused on agent-based approaches to process planning

and scheduling integration.
Examination of existing researches on the IPPS problem reveals that there mainly exist three optimisation

strategies in the literature, and brief introductions, as well as comments, are given below.

(1) The first optimisation strategy is based on the hypothesis that several parallel searches for different pieces

of the solution are more efficient than a single search for the entire solution (Moriarty and Miikkulainen

1997). The symbiotic evolutionary algorithm (SEA) proposed by Kim et al. (2003) belongs to this

approach. It divides IPPS into several subproblems, including process planning for each part and

scheduling of all parts. An entire solution is constructed by combining all partial solutions to

subproblems. This optimisation strategy makes full use of the capability of parallel searches for different

pieces of IPPS solution, and can obtain satisfactory results in a reasonable time. However, results achieved

by the representative SEA algorithm of this optimisation strategy are inferior when compared to that of

some other algorithms like the modified GA (Shao et al. 2009), EA (Li et al. 2010a) and hybrid algorithm

(Li et al. 2010c).
(2) The second optimisation strategy consists of two stages. In the first stage, a number of optimal or near-

optimal process plans for each part are determined. In the second stage, a process plan is selected for each

part, and the overall schedule is optimised. Based on this approach, a modified GA (Shao et al. 2009), EA

(Li et al. 2010a) and hybrid algorithm (Li et al. 2010c) have been proposed to address the IPPS problem.

This optimisation strategy reduces the complexity of the IPPS problem and therefore saves computational

time at the expense of raising the risk of missing the optimal solutions because only some near-optimal

process plans for each part are considered.

2 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

(3) The third optimisation strategy is based on agents. Agent-based technology has been employed by many
researchers to deal with the IPPS problem (Wong et al. 2006a, 2006b, Li et al. 2010d). It provides a valuable
approach to obtain promising solutions.

In this paper, a new optimisation strategy, which conducts the generation of a schedule plan and the
determination of a process plan for each part simultaneously, is proposed. Compared to the existing strategies
described above, the optimisation strategy proposed in this paper integrates process planning and scheduling more
tightly, and therefore increases the chances to obtain optimal solutions. On the other hand, efficient algorithms are
needed to explore the vast solution space in a reasonable computational time. In this paper, a novel metaheuristic
algorithm named the imperialist competitive algorithm (ICA) is employed to tackle the IPPS problem and, to the
best of the authors’ knowledge, there exists no published work on employing the ICA to address IPPS. So, this
paper focuses on the application of the ICA on the IPPS, and its performance is validated through four sets of
experiments. Comparisons with some existing algorithms are also provided.

Similar to other metaheuristic algorithms mimicking various kinds of natural phenomena such as natural
evolution, birds flocking, fish schooling and the foraging behaviour of ants, the ICA is inspired by imperialistic
competition. The ICA was proposed by Atashpaz-Gargari and Lucas (2007), and has shown its capability in dealing
with various optimisation problems (Abdechiri et al. 2010, Bahrami et al. 2010, Nazari-Shirkouhi et al. 2010,
Shokrollahpour et al. 2010, Karimi et al. 2011). The ICA was originally developed for solving continuous
optimisation problems, and we modify it here to solve the IPPS problem with makespan criterion. Computational
experiments and comparisons show that the proposed ICA approach outperforms some existing approaches for
solving the IPPS problems.

The rest of the paper is organised as follows. Section 2 formulates the IPPS problem, Section 3 describes the
implementation details of the ICA to the IPPS problem, computational experiments are given in Section 4 and
Section 5 concludes the paper.

2. IPPS

2.1 Flexible process plans and representation

Process planning is the act of selecting necessary operations required to manufacture a part and determining the
sequence of these selected operations subject to predefined precedence constraints. Three types of flexibility are
usually considered in process planning, namely, operation flexibility, sequencing flexibility and processing flexibility
(Kim et al. 2003). Operation flexibility refers to the possibility of performing an operation on alternative machines,
with possibly distinct processing times and costs. This type of flexibility is also called routing flexibility. Sequencing
flexibility relates to the possibility of interchanging the sequence in which manufacturing operations required for the
completion of a part are performed. Process flexibility refers to the possibility of producing the same manufacturing
feature with alternative operations, or alternative processes. Here, the process means a set of one or more
operations. Consideration of these flexibilities can produce better performance in the optimisation of scheduling.

These flexibilities can be described using a network representation proposed by Ho andMoodie (1996). As shown
in Figure 1, there are three node types in the network, namely, starting node, ending node and intermediate node. The
starting node and the ending node are dummy ones and indicate the start and the completion of the manufacturing
process of a part, respectively. An intermediate node indicates an operation with alternative machines that can
perform the operation and corresponding machining times required for the operation according to the machines.
Precedence relationships among operations are denoted using the arrows connecting them. The ‘OR’ symbol (named
the OR-connector) is used to describe processing flexibility that the same manufacturing feature can be completed
with different operation procedures. The links following a node and connected by an OR-connector are called
OR-links, and for each OR-connector, only one of the links will be traversed. An OR-link path denotes an operation
path that begins and ends with the same OR-connector. For the links that are not connected by OR-connectors, all of
them will be traversed. In the network of job 2 in Figure 1, paths (3, 5) and (4) are two OR-links with the same
OR-connector (OR2), and only one of them will be visited. Note that the OR-link path of one OR-connector can be
contained by the OR-link path of another OR-connector, e.g. path (3, 5) and path (4) of OR2 are contained by path
(2, 3, 4, 5, 6) of OR1. Operation flexibility is achieved by choosing different alternative machines. Sequence flexibility
is represented by the precedence relations of the network diagram producing various operation sequences. An
alternative process plan is one path from the starting node to the ending node.

International Journal of Production Research 3

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

2.2 Job shop scheduling

The conventional JSP problem is stated as follows (Zhang et al. 2008). Given n jobs that have to be processed on m

machines, each job consists of a predetermined sequence of operations; each operation needs to be performed on a

given machine for a given machining time without interruption. Job preemption is not allowed, and each machine

can handle only one job at a time. Operations of the same job cannot be processed simultaneously, and each job
must visit each machine exactly once. In this paper, transportation time of a job between two consecutive machines

is ignored and setup time for the operations on the machines is included in the processing time. Assignment of

operations to a time slot on a machine results in a schedule.
Gantt charts are utilised in this paper to represent a schedule. The X-axis of the Gantt chart indicates time. Each

row on the Y-axis indicates a machine and the detailed arrangement for the operations of the jobs on this machine.

2.3 IPPS

The IPPS problem can be stated as follows (Guo et al. 2009b). Given a set of n parts that are to be processed on

machines with operations including alternative manufacturing resources, select suitable manufacturing resources

and sequence the operations to determine a schedule in which the precedence constraints among operations can be

satisfied and the corresponding objectives can be achieved.
Conventional JSP assumes that the process plan for each part is determined before the scheduling functions, that

is, process planning and scheduling are conducted sequentially or separately. IPPS integrates these two interrelated

functions tightly and would probably provide better performance of manufacturing systems. On the other hand,

IPPS enlarges the solution space of the determined JSP in that various flexibilities of process planning are taken into
consideration. Since both process planning and JSP are NP-hard, the resulting IPPS falls into the category of an

NP-hard problem too (Khoshnevis and Chen 1991). Concerning the intractability of IPPS, in this paper, a novel

metaheuristic algorithm named the ICA is employed to tackle the problem.

Figure 1. Network representation of the illustrative example.

4 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

3. The ICA for the IPPS problem

The ICA is a new population-based EA proposed by Atashpaz-Gargari and Lucas (2007). In the ICA, solutions to
an optimisation problem are named as country – the equivalent of chromosome in the GA, particle in PSO or ant in
ACO. Each country has a power to indicate its fitness and for the IPPS problem considered in this paper, power is
inversely proportional to the makespan (also called cost in optimisation terminology). In the initial population of
countries, some of the best ones (countries with least makespan or cost) are selected as imperialists, and the rest of
the countries constitute the colonies of these imperialists. All the colonies will be distributed to these imperialists.
An imperialist and its corresponding colonies construct an empire. The total power of an empire is composed of the
power of the imperialist and that of all the colonies in the empire. The underlying motivation of the ICA is that all
imperialists try to assimilate their corresponding colonies and compete for taking possession of colonies from
each other.

There are four main steps in the ICA:

(1) Assimilation. Assimilation is the process of moving all the colonies to their relevant imperialists. If the
resulting colony is better than its imperialist, it will become the new imperialist and vice versa.

(2) Imperialistic competition. Imperialistic competition indicates that all empires try to possess more colonies

and increase its power. This procedure is realised by releasing the weakest colony of the weakest empire and
making a competition among all empires to possess this colony.

(3) Revolution. Shokrollahpour et al. (2010) applied the ICA to bi-criteria scheduling of the assembly flowshop
problem. A new step named revolution was added to the original ICA. Revolution means that some of the

weakest colonies are selected and replaced with new randomly generated ones in each generation of the ICA.
This revolution strategy is also adopted in this paper.

(4) Elimination. After imperialistic competition, a powerless empire will lose its colonies gradually, and
elimination happens when an imperialist has no colonies.

The original ICA terminates when there exists only one empire, that is, all the colonies have the same position
and power as the imperialist. Preliminary experiments have shown that the probability of all the countries having the
same position and power was quite low. In this paper, the maximum number of iterations (MaxIter) is used as the
termination criterion.

Although there exist some similarities between the ICA and GA in usage of some GA operators like
reproduction, crossover and mutation (described in the following sections), they are significantly different. Firstly,
although both the ICA and GA are population-based algorithms, they utilise different ‘reproduction’ strategy. In
the GA, individuals (solutions) that are not selected to reproduce offspring are eliminated from the current
population, while all the countries (solutions) in the ICA are kept throughout the optimisation process. Secondly,
crossover in the GA is applied to two selected parent individuals based on their fitness, while crossover in the
ICA happens between an imperialist and its colonies. In other words, crossover in the ICA aims to force colonies
moving towards their imperialists. Other moving strategies besides the crossover concept borrowed from the GA
could also be employed to accomplish the same assimilation purpose. Thirdly, mutation in the GA is applied to each
individual with a certain predefined probability to enhance population diversification, while the mutation in the
ICA is always applied to colonies after movement towards their imperialists. In addition, in contrast with the GA,
which is inspired from natural evolution, the ICA is a socio-politically motivated global search algorithm. The
underlying optimisation strategies of the GA and ICA are quite different. In the GA, better individuals are more likely
to pass on their genes to the next generation. In the ICA, all the colonies are guided to move towards some imperialists
that represent local optima of an optimisation problem at hand. The ICA converges when all countries reach the same
position.

The implementation details of the ICA for IPPS are described in the following subsections.

3.1 Initial country generation and evaluation

3.1.1 Solution representation

In this paper, each country (including imperialist and colony) that represents a solution to the IPPS problem in the
ICA population consists of two components: a scheduling plan and a process plan for each job. Figure 2 shows the
proposed representation scheme of the illustrative example given in Figure 1.

International Journal of Production Research 5

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

The first component is the scheduling plan string that adopts the operation-based representation scheme
(Bierwirth 1995). For an IPPS problem made up of n jobs, let li denote the total number of operations of job i.
The scheduling plan string is a permutation of job numbers, and each job number appears li times in the string. The
nth appearance of a job number refers to the nth operation in the process plan of this job. This representation
scheme has a superior feature that any permutation of the string can be decoded to a feasible solution. The length of
the scheduling plan string (the total number of operations of all jobs) equals

P
li. In the illustrative example of

Figure 1, there are three jobs to be scheduled and there exist 6, 10 and 11 operations for each job, respectively, so n is
equal to 3, and l1¼ 6, l2¼ 10, l3¼ 11.

P
li is equal to 27. Therefore, the length of the scheduling string is 27.

The second component contains the process plan for each job. Each process plan is made up of an operation
sequence, machine sequences and OR-connectors. The operation sequence involves the machining sequence of
operations for the completion of a job, and the machine sequence represents each operation’s corresponding
machine. The length of the operation sequence and machine sequence is equal to the total number of operations of a
job. Note that some operations may not be conducted in scheduling. To determine which operations in the
operation sequence are selected for scheduling, OR-connectors are responsible for forming the final process plan
from all the operations. The value of 0 means selecting a left OR-link path and the value of 1, a right OR-link path.
Figure 2 shows the process plan for each job given in Figure 1. Take the process plan of job 2 for example, the total
number of operations is 10, so the length of the operation sequence and machine sequence equals 10. The third
element of the operation sequence is operation 10, and its corresponding machine is machine 11. There exist two
OR-connectors in the network of job 2, so the length of the OR-connectors of the process plan for job 2 equals 2.
Note that the value of the second OR-connector is 1, so the right OR-link path (4) instead of OR-link path (3, 5) is
selected.

3.1.2 Makespan evaluation

The schedule plan string can be decoded into semi-active, active, non-delay and hybrid schedules. This paper adopts
the active schedule. In the decoding stage, the actual process plan for each job is first determined based on the values
of the OR-connectors, followed by the determination of the schedule plan. Note that not all the operations shown in
Figure 2 are selected in the actual process plans. Figure 3 shows the actual schedule plan and process plan for each
job, which are used to calculate makespan.

The notations used to explain the procedure are as follows.

M the total number of machines;
oij the jth operation of the ith jobs;
k the alternative machine corresponding to oij;

Figure 2. Illustration of proposed encoding scheme using the example given in Figure 1.

6 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

tijk the processing time of operation oij on machine k, tijk4 0;
asij the allowable starting time of operation oij;
sij the earliest starting time of operation oij;
eij the earliest ending time of operation oij, i.e. eij¼ sijþ tijk.

The decoding procedure is given as follows (Li et al. 2010c).

Step 1: Determine the machine for each element in the scheduling plan string based on the machine sequence of

each job’s process plan.

Step 2: For each operation, asij¼ ci(j� 1), ci(j�1) is the completion time of the operation that precedes oij of the

same job.

Step 3: Check the idle time of the machine of oij, which results in a set of idle periods [ts, te], and examine these this

periods sequentially. For the current period, if max(asij, ts)þ tijk5 te, the earliest starting time sij equals max(asij, ts);

otherwise, examine the next idle period. If there is no idle period satisfying this condition, then sij¼max(asij,

c(oij� 1)), c(oij� 1) is the completion time of the operation preceding oij on the same machine.

Step 4: The completion time for every operation cij¼ sijþ tijk.

Step 5: Calculate the starting time and ending time for every operation of every job.

In the above procedure, the starting time and completion time of each operation can be obtained. Makespan c is

the completion time of the last performed operation.

3.2 Empire construction

After the generation of the initial population of countries, some of the best countries are selected as the imperialists.

Suppose the size of the initial population is Npop, the number of imperialists is Nimp and the number of colonies is

Ncol. To divide the colonies among imperialists, the normalised cost (makespan) of each imperialist must be

computed using the following formula:

Cn ¼ maxðciÞ � cn, ð1Þ

where cn is the cost of the nth imperialist and Cn is its normalised cost. The colonies are distributed among

imperialists based on their normalised power. The normalised power of each imperialist is defined by

pn ¼
CnPNimp

i¼1 Ci

�����

����� ð2Þ

Figure 3. Determined schedule and process plans for makespan evaluation.

International Journal of Production Research 7

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Then, the number of colonies of an empire will be

NCn ¼ roundð pn �NcolÞ: ð3Þ

An imperialist with its corresponding colonies construct an empire.

3.3 Assimilation

3.3.1 Moving colonies of an empire toward the imperialist

According to the basic ICA, imperialists try to assimilate their colonies and make them similar to themselves, which
is achieved by moving their colonies toward themselves. As to the IPPS problem considered in this paper, a
crossover operator is defined to force colonies to move to their imperialists. In order to increase the ability of
searching different areas around the imperialist, a mutation operator is applied to each colony after movement.

. Crossover

Considering the encoding scheme proposed in this paper, the crossover operator involves crossover of the
schedule plan string and process plan string respectively, as is shown in Figures 4 and 5.

Based on the operation-based representation scheme, the crossover operator developed by Wang and Zheng
(2001) is applied to the scheduling string in this paper. The crossover of the schedule plan string is described as
follows.

Firstly, the set of job numbers is divided into two exclusive subsets S1 and S2 randomly, and each subset contains
at least one job. Then, the schedule strings of the imperialist and the colony are scanned to generate the schedule
string of the new colony. Elements of the schedule in the imperialist that belongs to S1 are copied to the new colony
directly, then the elements of the schedule in the colony that belongs to S2 are copied to the remaining positions of
the new colony. As Figure 4 illustrates, S1 contains job 1 and S2, job 2 and job 3. All the job numbers ‘1’ in I are
copied directly to the same positions to N, and all the job numbers ‘2’ and ‘3’ in C are copied to the remaining
positions of N.

Crossover of the process plan string is made up of (1) crossover of operation sequence and machine sequence
and (2) crossover of OR-connectors. Both of these crossover operators adopt the single point crossover.

Crossover of the operation sequence and machine sequence is given as follows.

Step 1: Initialise an empty operation sequence and machine sequence of the process plan for the new colony.

Step 2: Randomly determine a crossover point.

Step 3: Copy the elements of the operation sequence and machine sequence of the process plan of I that are before
the crossover point to the same positions of N. Delete these elements from the operation sequence and machine
sequence of C from left to right.

Figure 4. Crossover of a schedule plan.

Figure 5. Crossover of a process plan.

8 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Step 4: Copy the remaining elements of the operation sequence and machine sequence of C to the remaining
positions of the operation sequence and machine sequence of N sequentially.

Crossover of the OR-connectors is described as follows.

Step 1: Initialise empty OR-connectors of the new colony.

Step 2: Randomly determine a crossover point.

Step 3: Copy the elements of OR-connectors of the process plan of I that are before the crossover point to the
same positions of N.

Step 4: Copy the elements of OR-connectors of the process plan of C that are after the crossover point to the same
positions of N.

. Mutation

The mutation operator consists of both schedule plan mutation and process plan mutation, as is shown in
Figures 6 and 7.

The schedule plan mutation consists of two widely used neighbourhood strategies, namely, swap and insert.
Insert is the act of randomly selecting a job number and inserting it to another random position of the current
scheduling string. Swap is to exchange the positions of two randomly selected different job numbers in schedule plan
string.

The process plan mutation involves mutation of the operation sequence, machine sequence and OR-connectors.
Mutation of the operation sequence and machine sequence adopts the same insert and swap operators described
above. Mutation of OR-connectors is to randomly select an OR value and change it to its opposite value.

3.3.2 Exchanging positions of an imperialist and a colony

After moved towards the imperialist, a colony may reach a position with lower cost than that of the imperialist. In
this case, the colony will become the imperialist in the current empire and vice versa. In the following iterations,
colonies in the empire will move to the new imperialist.

3.4 Imperialistic competition

In the ICA, all empires compete to take possession of more colonies besides their current colonies. The imperialistic
competition gradually brings about a decrease in the power of weaker empires and an increase in the power of
powerful ones. To model this competition among imperialists, the weakest colony of the weakest empire is freed
from its current imperialist and waits to be possessed by all empires. During the competing process, each empire will
have a likelihood of taking possession of the freed colony based on their total power, that is, empires with more total
power will be more likely to possess it.

The total power of an empire is determined by the power of the imperialist and that of all its colonies, that is, the
equation of total cost is:

T:C:n ¼ cn ðimperialistnÞ þ � �mean ðcnðcolonies of empirenÞÞ, ð4Þ

where T.C.n is the total cost of the nth empire and � is a positive number that is in the range of [0, 1]. Different values
of � indicate the weight of the cost of the imperialist on the total cost of an empire.

Figure 7. Mutation of the process plan.
Figure 6. Mutation of the schedule plan.

International Journal of Production Research 9

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

The normalised total cost is computed by

N:T:C:n ¼ maxðT:C:iÞ � T:C:n, ð5Þ

where T:C:n and N:T:C:n are total cost and normalised total cost of the nth empire, respectively. Then, the
possession probability of each empire is given by

ppn ¼
N:T:C:nPNimp

i¼1 N:T:C:i

�����

����� ð6Þ

and

P ¼ pp1 , pp2 , . . . , ppNimp

h i
ð7Þ

Then, a vector R with the same size as P is created, and its elements are uniformly distributed random numbers:

R ¼ r1, r2, . . . , rNimp

� �
: ð8Þ

Then, a vector D is formed by simply subtracting R from P:

D ¼ P� R ¼ D1,D2, . . . ,DNimp

� �
: ð9Þ

The empire whose relevant index in D is biggest will take possession of the freed colony.

3.5 Revolution

Revolution indicates that the weakest colony of the weakest empire is replaced by a randomly generated solution
(Shokrollahpour et al. 2010).

3.6 Elimination of powerless imperialists

When an imperialist loses all of its colonies, it will be eliminated from the population.

3.7 The proposed ICA procedure for IPPS

Based on the above discussions, the computational procedure of the proposed ICA is described as follows.

Step 1: Initialise parameters of the ICA: Npop, Nimp, � and MaxIter.

Step 2: Randomly generate Npop number of countries. Choose Nimp number of best countries as imperialists and
determine their colonies according to their power.

Step 3: If the termination criterion is not met, repeat the following steps.

Step 4: Assimilation.

Step 5: Imperialistic competition.

Step 6: Revolution.

Step 7: Elimination of powerless empires.

The flowchart of the ICA is depicted in Figure 8.

4. Experimental studies

Performance of the ICA has been tested on several IPPS problems in the literature. Four groups of experiments are
considered. The first group of experiments contains small size problems. In the second and third groups of
experiments, medium size problems are tested. The fourth group of experiments is presented by solving a benchmark

10 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

problem to confirm the effectiveness of the proposed ICA for a large-scale problem. In order to validate the
performance, results of the problems from the presented ICA are compared with those of some other algorithms in
the literature.

The algorithm implemented in this paper was coded in Cþþ and run on a personal computer with a 2.0 GHz
Intel Core2 Duo CPU. Parameters of the ICA include total number of countries Npop, total number of empires Nimp,
the weight � and maximum number of iterations MaxIter. Preliminary experiments were conducted to determine
values of these parameters. Specifically, we chose alternatives values for Npop: [50, 100, 200], Nimp: [7, 10, 15] and �:
[0.2, 0.4, 0.6], which resulted in a total number of 27 combinations of parameters. We tested the performance of each
parameter combination on problem 1 in the first experiment. Computational results showed that the following
parameter values could obtain satisfactory results: Npop¼ 100, Nimp¼ 7, �¼ 0.6 and MaxIter¼ 1000. For
computational comparisons, each experiment was repeated five times for every test-bed problem, and the best
solution obtained at each run was taken. The computational times listed in the various tables are the mean times of
all five independent runs recorded.

4.1 Experiment 1

In this experiment, six problems are taken from the literature to compare the performance of the proposed ICA with
that of other methods. The makespan values for these problems obtained from the proposed ICA and well-known
methods in the literature are listed in Table 1. The values set in bold type are used to emphasise the better
computational results our proposed method achieved.

Table 1 shows that the proposed ICA succeeded in finding all the best-known results in less computational time
for all the small size problems, and a better solution is found for problem 4. The Gantt chart of the best schedule
obtained by the ICA of problem 4 is given in Figure 9.

Figure 8. Workflow of the ICA.

International Journal of Production Research 11

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

4.2 Experiment 2

The testing data in experiment 2 was taken from Jain et al. (2006). In this experiment, 18 jobs and four machines are

used to construct six experiments with the number of jobs varying from eight to 18. Table 2 shows the experimental

results, and Figure 10 illustrates the Gantt chart of the optimal solution found for the first problem. It can be seen

from Table 2 that the ICA outperforms the EA on all six problems. In addition, the ICA needs less computational
time to obtain better results.

4.3 Experiment 3

The data of experiment 3 were taken from Kim et al. (2003) and Kim (2003). In this experiment, 24 problems are

constructed with 18 jobs with various combinations of flexibility levels and 15 machines. The number of operations
of these problems varies from 79 to 300.The number of jobs, the number of operations and the jobs in each problem

are listed in Table 3.

Figure 9. Gantt chart of the obtained solution to problem 4 in experiment 1.

Table 1. Computational results of experiment 1 (n and m represent the total number of jobs and the total number of machines,
respectively. CPU time of the results marked by * are not provided in the referenced paper).

No. Reference n�m

Best known algorithms
ICA

Algorithm Makespan (CPU time/s) Makespan (CPU time/s)

1 (Li et al. 2010a) 5� 5 EA, SA, GA 33* 33 (1.65)
2 (Moon et al. 2008) 5� 5 Modified GA 14* 14 (0.03)
3 (Li et al. 2010a) 6� 5 EA 27 (3.20) 27 (0.30)
4 (Li et al. 2010a) 6� 5 EA 92 (3.23) 90 (0.50)
5 (Li et al. 2010c) 8� 5 HA 24* 24 (0.17)
6 (Nasr and Elsayed 1990) 4� 6 EA 17* 17 (0.05)

12 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

From observation of Table 4, we can conclude that the ICA outperforms the hierarchical approach (HA) and
cooperative coevolutionary genetic algorithm (CCGA) for all 24 test problems. Compared to the SEA, the same or
better solutions have been found for 18 out of the 24 test problems in less computational time. Figure 11 gives the

Gantt chart of the optimal solution found for problem 24.
The computational results of experiment 2 and 3 indicate that the ICA is able to obtain optimal or near-optimal

solutions for medium size IPPS problems in a reasonable computational time. For most of the test problems, the

ICA found better solutions.

4.4 Experiment 4

This problem is taken from Chan et al. (2005). In this experiment, the problem is constructed with 100 jobs and 10
machines. Table 5 shows the experimental results. Figure 12 illustrates the Gantt chart of the optimal solution

obtained for the problem. Table 5 indicates that the ICA is very effective in solving a large-scale IPPS problem as
compared to the single GA and the GA with dominated genes (GADG) (Chan et al. 2005).

Figure 10. Gantt chart of the obtained solution to problem 1 in experiment 2.

Table 2. Computational results of experiment 2 (the results marked by * are adopted from Li et al.
(2010a)).

No. Jobs

Makespan (CPU time/s)

No integration* EA* ICA

1 8 615 (3.42) 520 (3.28) 499 (2.98)
2 10 831 (3.72) 621 (3.38) 586 (3.26)
3 12 934 (3.91) 724 (3.67) 679 (2.73)
4 14 1004 (4.14) 809 (3.69) 803 (2.50)
5 16 1189 (4.39) 921 (3.73) 900 (2.49)
6 18 1249 (4.69) 994 (4.09) 976 (3.87)

International Journal of Production Research 13

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Table 4. Computational results of experiment 3 (the results marked by * are adopted from Kim et al.
(2003) with no CPU time of HA and CCGA provided).

No. HA* CCGA*
SEA

(CPU time/s)*
ICA

(CPU time/s)

1 483 458 428 (60.5) 427 (19.9)
2 383 363 343 (68.9) 343 (52.2)
3 386 366 347 (81.7) 345 (70.4)
4 328 312 306 (65.6) 306 (40.3)
5 348 327 319 (63.5) 319 (60.0)
6 506 476 438 (73.3) 435 (65.6)
7 386 378 372 (69.0) 372 (65.8)
8 376 363 343 (67.3) 343 (57.4)
9 507 464 428 (73.2) 427 (63.3)
10 504 476 443 (136.0) 440 (112.5)
11 413 410 369 (165.8) 367 (150.8)
12 361 360 328 (143.4) 327 (134.5)
13 505 498 452 (161.2) 457 (182.6)
14 423 420 381 (150.8) 390 (172.3)
15 496 482 434 (156.0) 432 (153.2)
16 521 512 454 (333.6) 466 (411.3)
17 474 466 431 (435.2) 443 (457.6)
18 417 396 379 (357.0) 384 (380.2)
19 550 535 490 (417.8) 490 (402.5)
20 473 450 447 (384.0) 440 (356.8)
21 525 501 477 (392.4) 466 (354.6)
22 560 567 534 (1033.3) 529 (980.4)
23 533 531 498 (1016.6) 495 (993.2)
24 607 611 587 (1622.7) 577 (1478.5)

Table 3. Test-bed problems of experiment 3.

No. Jobs Operations Job number

1 6 79 1-2-3-10-11-12
2 6 100 4-5-6-13-14-15
3 6 121 7-8-9-16-17-18
4 6 95 1-4-7-10-13-16
5 6 96 2-5-8-11-14-17
6 6 109 3-6-9-12-15-18
7 6 99 1-4-8-12-15-17
8 6 96 2-6-7-10-14-18
9 6 105 3-5-9-11-13-16
10 9 132 1-2-3-5-6-10-11-12-15
11 9 168 4-7-8-9-13-14-16-17-18
12 9 146 1-4-5-7-8-10-13-14-16
13 9 154 2-3-6-9-11-12-15-17-18
14 9 151 1-2-4-7-8-12-15-17-18
15 9 149 3-5-6-9-10-11-13-14-16
16 12 179 1-2-3-4-5-6-10-11-12-13-14-15
17 12 221 4-5-6-7-8-9-13-14-15-16-17-18
18 12 191 1-2-4-5-7-8-10-11-13-14-16-17
19 12 205 2-3-5-6-8-9-11-12-14-15-17-18
20 12 195 1-2-4-6-7-8-10-12-14-15-17-18
21 12 201 2-3-5-6-7-9-10-11-13-14-16-18
22 15 256 2-3-4-5-6-8-9-10-11-12-13-14-16-17-18
23 15 256 1-4-5-6-7-8-9-11-12-13-14-15-16-17-18-19
24 18 300 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18

14 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Figure 11. Gantt chart of the obtained solution to problem 24 in experiment 3.

Figure 12. Gantt chart of the obtained solution to the problem in experiment 4.

Table 5. Computational results of experiment 4 (the results marked by * are adopted from Chan
et al. (2005)).

Algorithm GA* GADG* ICA (CPU time/s)

Makespan 267 229 169 (104.6)

International Journal of Production Research 15

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

4.5 Discussion

The experimental results for all test problems indicate that the proposed ICA is effective to solve IPPS problems of
various sizes. Some distinguishing features of the ICA that contribute to its success are summarised as follows. Since
imperialists in the ICA represent the better solutions among all the countries, assimilation forces the colonies to
move to the optimal or near-optimal solutions in the search space of the IPPS problem. The imperialistic
competition avoids the ICA being trapped into local optima. In the proposed ICA, revolution introduces a new
randomly generated solution, which helps to enhance country diversity. Furthermore, the elimination of powerless
empires in the proposed ICA enhances the convergence speed.

Future improvements of ICA could be conducted through the following aspects.

(1) Due to the adoption of normalised cost of each imperialist to distribute initial colonies, the empire
construction phase of the original ICA would always result in an empire with no colonies. Specifically, the
normalised cost of the worst imperialist, the one with the biggest makespan in the present IPPS problem,
would be zero, in other words, this empire will most likely be eliminated in the very first iteration of ICA.
The same problem exists in the imperialistic competition phase where the weakest empire would have the
probability of zero to possess a freed colony.

(2) The ICA in this paper utilised the concept of crossover and mutation borrowed from the GA to accomplish
the assimilation process. Some other assimilation strategies could be developed to better accommodate the
assimilation purpose.

5. Conclusions

In this paper, the ICA is presented to minimise makespan for the IPPS problem, in which operation flexibility,
sequencing flexibility and processing flexibility of each job are taken into account simultaneously. This algorithm
starts from a population of countries and proceeds through assimilation, imperialistic competition, revolution and
elimination of powerless empires. The ICA has been tested on four sets of IPPS instances varying from small sizes to
large sizes, and compared with previous algorithms, such as the HA, EA, CCGA and SEA. Experimental results show
that the ICA can obtain better optimal or near-optimal solutions than the other algorithms, which manifests that the
ICA is very effective in solving the IPPS problem. Contributions of the present work are summarised as follows.

(1) A new optimisation strategy for the IPPS problem is introduced. Compared to existing approaches in the
literature, the optimisation strategy presented in this paper is able to integrate process planning and
scheduling more tightly and more promising solutions can be obtained. Computational results of four sets of
experiments validate the effectiveness of the present strategy.

(2) A new optimisation algorithm named the ICA is utilised to address the IPPS problem. To the best of the
authors’ knowledge, this is the first application of the ICA to IPPS problems. Results show that the ICA can
obtain very promising results in a reasonable computational time. In future work, the ICA could be applied
to solve other difficult scheduling optimisation problems.

In future research, the IPPS problem under dynamic environments, such as new job arrival, machine breakdown
and multi-objective IPPS problems, could be considered.

Acknowledgements

The authors thank the anonymous referees whose comments helped to much improve this paper. This research work is supported
by the National High-Tech Research and Development Program of China 863 Program (grant no. 2007AA04Z107) and the State
Key Program of National Natural Science of China (grant no. 51035001).

References

Abdechiri, M., Faez, K., and Bahrami, H., 2010. Neural network learning based on chaotic imperialist competitive algorithm.

Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, 1–5.

16 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Atashpaz-Gargari, E. and Lucas, C., 2007. Imperialist competitive algorithm: An algorithm for optimization inspired by

imperialistic competition. Evolutionary Computation, 2007. CEC 2007. IEEE Congress, 4661–4667.
Bahrami, H., Faez, K., and Abdechiri, M., 2010. Imperialist competitive algorithm using chaos theory for optimization.

Computer Modelling and Simulation (UKSim), 2010 12th International Conference, 98–103.

Baykasoğlu, A. and Özbak|r, L., 2009. A grammatical optimization approach for integrated process planning and scheduling.

Journal of Intelligent Manufacturing, 20 (2), 211–221.
Bierwirth, C., 1995. A generalized permutation approach to job shop scheduling with genetic algorithms. OR Spectrum, 17 (2),

87–92.
Cai, N., Wang, L., and Feng, H.Y., 2009. GA-based adaptive setup planning toward process planning and scheduling

integration. International Journal of Production Research, 47 (10), 2745–2766.
Chan, F.T.S., Chung, S.H., and Chan, P.L.Y., 2005. An adaptive genetic algorithm with dominated genes for distributed

scheduling problems. Expert Systems with Applications, 29 (2), 364–371.
Girish, B.S. and Jawahar, N., 2009. Scheduling job shop associated with multiple routings with genetic and ant colony heuristics.

International Journal of Production Research, 47 (14), 3891–3917.

Guo, Y.W., et al., 2009a. Applications of particle swarm optimisation in integrated process planning and scheduling. Robotics

and Computer-Integrated Manufacturing, 25 (2), 280–288.
Guo, Y.W., et al., 2009b. Optimisation of integrated process planning and scheduling using a particle swarm optimisation

approach. International Journal of Production Research, 47 (14), 3775–3796.
Ho, Y.C. and Moodie, C.L., 1996. Solving cell formation problems in a manufacturing environment with flexible processing and

routeing capabilities. International Journal of Production Research, 34 (10), 2901–2923.
Jain, A., Jain, P., and Singh, I., 2006. An integrated scheme for process planning and scheduling in FMS. The International

Journal of Advanced Manufacturing Technology, 30 (11), 1111–1118.
Karimi, N., Zandieh, M., and Najafi, A.A., 2011. Group scheduling in flexible flow shops: a hybridised approach of imperialist

competitive algorithm and electromagnetic-like mechanism. International Journal of Production Research, 49 (16),

4965–4977.

Khoshnevis, B. and Chen, Q.M., 1991. Integration of process planning and scheduling functions. Journal of Intelligent

Manufacturing, 2 (3), 165–175.
Kim, Y.K., 2003. A set of data for the integration of process planning and job shop scheduling [online]. Available from: http://

syslab.chonnam.ac.kr/links/data-pp&s.doc.
Kim, Y.K., Park, K., and Ko, J., 2003. A symbiotic evolutionary algorithm for the integration of process planning and job shop

scheduling. Computers & Operations Research, 30 (8), 1151–1171.
Lee, H. and Kim, S.-S., 2001. Integration of process planning and scheduling using simulation based genetic algorithm.

The International Journal of Advanced Manufacturing Technology, 18 (8), 586–590.
Leung, C.W., et al., 2010. Integrated process planning and scheduling by an agent-based ant colony optimization. Computers &

Industrial Engineering, 59 (1), 166–180.

Li, W.D. and McMahon, C.A., 2007. A simulated annealing-based optimization approach for integrated process planning and

scheduling. International Journal of Computer Integrated Manufacturing, 20 (1), 80–95.
Li, X., et al., 2010a. Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and

scheduling. Computers & Operations Research, 37 (4), 656–667.
Li, X., et al., 2010b. A review on integrated process planning and scheduling. International Journal of Manufacturing Research,

5 (2), 161–180.

Li, X., et al., 2010c. An effective hybrid algorithm for integrated process planning and scheduling. International Journal of

Production Economics, 126 (2), 289–298.
Li, X., et al., 2010d. An agent-based approach for integrated process planning and scheduling. Expert Systems with Applications,

37 (2), 1256–1264.

Moon, C., et al., 2008. Integrated process planning and scheduling in a supply chain. Computers & Industrial Engineering, 54 (4),

1048–1061.
Morad, N. and Zalzala, A.M.S., 1999. Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent

Manufacturing, 10 (2), 169–179.
Moriarty, D.E. and Miikkulainen, R., 1997. Forming neural networks through efficient and adaptive coevolution. Evolutionary

Computation, 5 (4), 373.

Nasr, N. and Elsayed, E.A., 1990. Job shop scheduling with alternative machines. International Journal of Production Research,

28 (9), 1595–1609.
Nazari-Shirkouhi, S., et al., 2010. Solving the integrated product mix-outsourcing problem using the Imperialist Competitive

Algorithm. Expert Systems with Applications, 37 (12), 7615–7626.

Nejad, H.T.N., Sugimura, N., and Iwamura, K., 2011. Agent-based dynamic integrated process planning and scheduling in

flexible manufacturing systems. International Journal of Production Research, 49 (5), 1373–1389.

International Journal of Production Research 17

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

Phanden, R.K., Jain, A., and Verma, R., 2011. Integration of process planning and scheduling: a state-of-the-art review.
International Journal of Computer Integrated Manufacturing, 24 (6), 517–534.

Shao, X., et al., 2009. Integration of process planning and scheduling – a modified genetic algorithm-based approach. Computers
& Operations Research, 36 (6), 2082–2096.

Shokrollahpour, E., Zandieh, M., and Dorri, B., 2010. A novel imperialist competitive algorithm for bi-criteria scheduling of the
assembly flowshop problem. International Journal of Production Research, 49 (11), 3087–3103.

Tan, W. and Khoshnevis, B., 2000. Integration of process planning and scheduling—a review. Journal of Intelligent
Manufacturing, 11 (1), 51–63.

Wang, L. and Zheng, D.-Z., 2001. An effective hybrid optimization strategy for job-shop scheduling problems. Computers &

Operations Research, 28 (6), 585–596.
Wang, J., et al., 2009. Reducing tardy jobs by integrating process planning and scheduling functions. International Journal of

Production Research, 47 (21), 6069–6084.

Weiming, S., Lihui, W., and Qi, H., 2006. Agent-based distributed manufacturing process planning and scheduling: a state-
of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 36 (4), 563–577.

Wong, T.N., et al., 2006a. An agent-based negotiation approach to integrate process planning and scheduling. International
Journal of Production Research, 44 (7), 1331–1351.

Wong, T.N., et al., 2006b. Integrated process planning and scheduling/rescheduling—an agent-based approach. International
Journal of Production Research, 44 (18/19), 3627–3655.

Zattar, I.C., et al., 2010. A multi-agent system for the integration of process planning and scheduling using operation-based time-

extended negotiation protocols. International Journal of Computer Integrated Manufacturing, 23 (5), 441–452.
Zhang, Y.F., Saravanan, A.N., and Fuh, J.Y.H., 2003. Integration of process planning and scheduling by exploring the flexibility

of process planning. International Journal of Production Research, 41 (3), 611–628.

Zhang, C.Y., et al., 2008. A very fast TS/SA algorithm for the job shop scheduling problem. Computers & Operations Research,
35 (1), 282–294.

18 K. Lian et al.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r
st

ud
en

t f
ee

s]
 a

t 1
9:

15
 2

9
M

ar
ch

 2
01

2

