
Struct Multidisc Optim
DOI 10.1007/s00158-011-0754-4

RESEARCH PAPER

Chaotic imperialist competitive algorithm for optimum design
of truss structures

Siamak Talatahari · Ali Kaveh · Razi Sheikholeslami

Received: 6 March 2011 / Revised: 10 November 2011 / Accepted: 17 December 2011
c© Springer-Verlag 2012

Abstract The imperialist competitive algorithm is a new
socio-politically motivated optimization algorithm which
recently is applied for structural problems. This paper uti-
lizes the idea of using chaotic systems instead of random
processes in the imperialist competitive algorithm. The
resulting method is called chaotic imperialist competitive
algorithm (CICA) in which chaotic maps are utilized to
improve the movement step of the algorithm. Some well-
studied truss structures are chosen to evaluate the efficiency
of the new algorithm.

Keywords Imperialist competitive algorithm · Chaos ·
Meta-heuristic algorithms · Truss structures ·
Optimum design

1 Introduction

Structural optimization has become one of the most active
branches of structural engineering in the last decades
(Kaveh et al. 2008) and meta-heuristic optimization tech-
niques provide efficient tools to reach the optimum design
of structures. Genetic algorithms, particle swarm optimiza-

S. Talatahari
Marand Faculty of Engineering, University of Tabriz, Tabriz, Iran

A. Kaveh (B)
Centre of Excellence for Fundamental Studies in Structural
Engineering, Iran University of Science and Technology,
Narmak, Tehran-16, Iran
e-mail: alikaveh@iust.ac.ir

R. Sheikholeslami
Department of Civil Engineering, Amirkabir University
of Technology, Tehran, Iran

tion (Eberhart and Kennedy 1995), ant colony optimization
(Dorigo et al. 1996), harmony search algorithm (Geem
et al. 2001), charged system search (Kaveh and Talatahari
2010a), and imperialist competitive algorithm (Atashpaz-
Gargari and Lucas 2007) are some familiar examples of
meta-heuristic algorithms.

Characterizing the irregular behavior that can be caused
either by deterministic chaos or by stochastic processes is
not an easy task to perform and it is still an open problem to
distinguish among these two types of phenomena. However,
the interest in studying the use of chaotic systems instead of
random ones arises when the theme of chaos reaches a high
interdisciplinary level involving not only mathematicians,
physicians and engineers but also biologists, economists
and scientists from different areas (Chen and Dong 1998;
Antoniou et al. 2003; Harb and Abdel-Jabbar 2003). One of
these fields is based on the idea of using chaotic systems for
stochastic optimization algorithms.

Although chaos and random signals share the property
of long term unpredictable irregular behavior and many of
random generators in programming softwares as well as
the chaotic maps are deterministic; however chaos can help
order to arise from disorder. Similarly, nature-inspired opti-
mization algorithms are inspired from biological systems
where order arises from disorder. In these cases disorder
often indicates both non-organized patterns and irregular
behavior, whereas order is the result of self-organization and
evolution and often arises from a disorder condition or from
the presence of dissymmetries. Self-organization and evo-
lution are two key factors of many stochastic optimization
techniques. Due to these common properties between chaos
and optimization algorithms, simultaneous use of these con-
cepts may improve the performance. Experimental studies
show the benefits of such combination; although, this is not
mathematically proved yet (Tavazoei and Haeri 2007).



S. Talatahari et al.

Chaotic sequences have been shown to be easy and fast
to generate and store, and there is no need for storing long
sequences. Merely a few functions (chaotic maps) and few
parameters (initial conditions) are needed even for very long
sequences. In addition, an enormous number of different
sequences can be generated simply by changing its initial
condition. Moreover these sequences are deterministic and
reproducible (Alatas 2010).

This paper presents chaotic imperialist competitive algo-
rithm (CICA) to determine optimum design of truss struc-
tures. Original imperialist competitive algorithm (ICA) is
a socio-politically motivated optimization algorithm. Each
individual agent of an empire is called a country, and the
countries are categorized into colony and imperialist states
that collectively form empires. Imperialistic competitions
among these empires form the basis of the ICA which
directs the search process toward the powerful imperialist
or the optimum points. Kaveh and Talatahari improved the
ICA by defining two new movement steps and investigated
the performance of this algorithm to optimize the design of
skeletal structures (Kaveh and Talatahari 2010b, c). This
algorithm is called orthogonal imperialist competitive algo-
rithm (OICA). In the proposed algorithm (CICA), we use
different chaotic systems with substitute random number
generators for different parameters of the ICA.

Several design examples are tested using the new method,
and the results reveal that the improvement of the present
algorithm is due to the application of deterministic chaotic
signals in place of random sequences. The remaining sec-
tions of this paper are organized as follows:

Review of ICA is presented in Section 2. In Section 3,
we introduce the proposed method which is called chaotic
imperialist competitive algorithm (CICA). The CICA meth-
od for optimal design of trusses is provided in Section 4.
Section 5 contains several illustrative examples, and Section 6
concludes the paper.

2 Imperialist competitive algorithm

2.1 Standard imperialist competitive algorithm

Meta-heuristics are designed to tackle complex optimization
problems where other optimization methods have failed to
be either effective or efficient. These methods have come
to be recognized as one of the most practical approaches
for solving many complex problems, and this is particularly
true for the many real-world problems that are combina-
torial in nature. Although some algorithms perform better
on some design problems than others and no one algorithm
performs best on all problems, the practical advantage of
meta-heuristics lies in both their effectiveness and more

or less general applicability (Ólafsson 2006). The ICA is
one of these meta-heuristic optimization techniques which
simulates the social political process of imperialism and
imperialistic competition. This algorithm is a population
based process in which each individual of the population is
called a “country”. Some of the best countries (in optimiza-
tion terminology, countries with lower cost) are selected to
be the “imperialist” states and the remaining countries form
the “colonies” of these imperialists. All the colonies of ini-
tial countries are divided among the imperialists based on
their “power”.

In the ICA, the assimilation policy, pursued by some
of former imperialist states, is modeled by moving all
the colonies toward the imperialist. The total power of an
empire depends on both the power of the imperialist country
and the power of its colonies. Then the imperialistic compe-
tition begins among all the empires. Any empire that is not
able to succeed in this competition and cannot increase its
power (or at least prevent losing its power) will be elimi-
nated from the competition. The imperialistic competition
will gradually result in an increase in the power of the
powerful empires and a decrease in the power of weaker
ones. Weak empires will loose their power and ultimately
they will collapse. The movement of colonies, competi-
tion among empires and the collapse mechanism direct the
optimization process toward an optimum point.

The agents or countries (with the number of Ncountry)

are divided into two types; the best ones or imperialist
states (with the number of Nimp) and the colonies (with the
number of Ncol). The initial countries are generated ran-
domly as:

{x}i = {xmin} + {rand} ⊗ {xmax − xmin} (1)

in which min and max represent the lower and upper bounds
for variable vector {x}, respectively. The sign “⊗” denotes
an element-by-element multiplication. {rand} is a random
vector.

In this paper, 10 percent of countries are considered as
empires and the remaining is used as colonies. In order
to divide the colonies of initial countries among the impe-
rialists, the power of each country is defined inversely
proportional to its cost which is calculated considering the
related objective function. The imperialist states together
with their colonies form some empires. To form the initial
empires, the normalized cost of an imperialist is defined as:

Cn = f (imp,n)
cos t − max

i

(
f (imp,i)
cos t

)
(2)

where f (imp,n)
cos t is the cost of the nth imperialist and Cn is

its normalized cost. The initial colonies are divided among



Chaotic imperialist competitive algorithm for optimum design of truss structures

empires based on normalized cost, and for the nth empire it
is as follows:

NCn = Round

⎛
⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣

Cn

Nimp∑
i=1

Ci

∣∣∣∣∣∣∣∣∣∣
· Ncol

⎞
⎟⎟⎟⎟⎠

(3)

where NCn is the initial number of colonies associated to
the nth empire. In order to select the colonies of nth empire,
the order of colonies is changed using a random permutation
and then NCn ones are chosen. These colonies along with
the nth imperialist form the nth empire.

After forming the initial empires, the colonies in each
empire start moving toward their relevant imperialist coun-
try. This movement is shown in Fig. 1 in which a colony
moves toward the imperialist by using a random generator
that is uniformly distributed between 0 and β × d:

{x}new = {x}old + U (0, β × d) × {V1} (4)

where β is a control parameter and d is the distance between
colony and imperialist. {V1} is a vector which its start point
is the previous location of the colony and its direction is
toward the imperialist locations. The length of this vector is
set to unity.

In order to increase the searching around the imperial-
ist, a random amount of deviation is added to the direction
of movement in the original ICA. Figure 1 shows the new
direction which is obtained by deviating the previous loca-
tion of the country by the amount θ which is a random
number generator with uniform distribution.

At the end of each iteration, if the new position of a co-
lony is better than that of the corresponding imperialist (con-
sidering the cost function), the imperialist and the colony
change their positions and the new location with lower cost
becomes the imperialist.

The colonies are loyal to their empires; however all
empires try to take the possession of the colonies of other
empires and control them according to the imperialistic

competition strategy. The imperialistic competition gradu-
ally reduces the power of the weaker empires and increases
the power of more powerful ones by picking some (usually
one) of the weakest colonies of the weakest empires and
making a competition among all empires to possess these
(this) colonies. Based on their total power, in this com-
petition, each of empires will have a likelihood of taking
possession of the above mentioned colonies.

Total power of an empire is affected by the power of
imperialist country and the colonies of an empire as

T Cn = f (imp,n)
cos t + ξ ·

NCn∑
i=1

f (col,i)
cos t

NCn
(5)

where TCn is the total cost of the nth empire and ξ is a
positive number. Similar to (2), the normalized total cost is
defined as

N T Cn = T Cn − max
i

(T Ci ) (6)

where N T Cn is the normalized total cost of the nth empire.
Having the normalized total cost, the possession probability
of each empire is evaluated by

Pn =

∣∣∣∣∣∣∣∣∣∣

N T Cn

Nimp∑
i=1

N T Ci

∣∣∣∣∣∣∣∣∣∣
(7)

When an empire loses all its colonies, it is assumed to be
collapsed. In this model when the powerless empires col-
lapse in the imperialistic competition, the corresponding
imperialist will be added to an empire as a colony. This step
is known as “implementation”.

Moving colonies toward imperialists are continued and
imperialistic competition and implementations are per-
formed during the search process. When the number of
iterations reaches a pre-defined value, the search process is
stopped (Kaveh and Talatahari 2010b, c).

Fig. 1 Movement of colonies to
its new location in the original
ICA



S. Talatahari et al.

Fig. 2 Movement of colonies to
the new location in the
improved ICA

Table 1 The chaotic maps

*Here, [a] denotes the largest
integer less than a

Chaotic map name Description

Sinusoidal map (May 1976) xk+1 = sin (πxk)

Logistic map (May 1976) xk+1 = 4xk (1 − xk)

Zaslavskii map (Zaslavskii 1978) xk+1 = (xk + 400 + 12yk+1) − [
xk + 400 + 12yk+1

]∗
yk+1 = cos(2πxk) + e−3 yk

Tent map (Peitgen et al. 1992) xk+1 =
{

xk/0.7 xk < 0.7

10/3xk(1 − xk) otherwise

Fig. 3 Pseudo-code for the
CICA methods 1) Initialize the algorithm parameters.

2) Select a chaotic map and generate chaotic variable according to the selected map.

3) Move the colonies toward their relevant imperialist chaotically (Chaotically assimilating).

3) If there is a colony in an empire which has lower cost than that of imperialist, exchange the 

positions of that colony and the imperialist.

4) Compute the total cost of all empires.

5) Use imperialistic competition and pick the weakest colony from the weakest empire.

6) Eliminate the powerless empires.

7) If there is just one empire, stop, if not go to 2.

Fig. 4 A 25-bar spatial truss
structure



Chaotic imperialist competitive algorithm for optimum design of truss structures

Fig. 5 Effect of the CICA-1
parameters on the average
weight of the 25-bar truss

Table 2 Optimal design
comparison for the 25-bar
spatial truss

Element Optimal cross-sectional areas (cm2)

group ICA OICA CICA-1 CICA-2 CICA-3 CICA-4

1 A1 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

2 A2 ∼ A5 14.148 14.219 12.523 14.394 14.877 12.342

3 A6 ∼ A9 17.903 18.768 19.580 18.935 18.245 21.277

4 A10 ∼ A11 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

5 A12 ∼ A13 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

6 A14 ∼ A17 4.3806 4.7871 4.2645 4.2387 4.3548 4.5677

7 A18 ∼ A21 10.419 9.9225 10.968 9.7483 9.7226 10.355

8 A22 ∼ A25 17.652 17.039 17.264 17.684 17.684 16.613

Best weight (kg) 247.68 247.63 247.38 247.55 247.54 247.75

Average Weight (kg) 257.22 249.44 248.81 253.58 249.29 249.33

SD (kg) 9.378 1.699 1.225 5.603 2.361 2.506

Fig. 6 Convergence rate
comparison between the three
algorithms for the 25-bar spatial
truss structure (average of 30
different runs)

1 1,000 2,000 3,000 4,000 5,000
245

250

260

270

280

290

Number of Analyses

W
ei

gh
t

ICA
OICA
CICA-1



S. Talatahari et al.

Fig. 7 Convergence rate
comparison between the
different CICA algorithms for
the 25-bar spatial truss structure
(average of 30 different runs)

0 1,000 2,000 3,000 4,000 5,000
245

250

260

270

280

290

Number of Analyses

W
ei

gh
t

 

CICA-1
CICA-2
CICA-3
CICA-4

2.2 Improved imperialist competitive algorithm

Recently, Kaveh and Talatahari (2010b) presented an im-
proved ICA. This algorithm is obtained by modifying the
movement stage of the original algorithm. Considering the
movement process of the ICA, a point out of the colony-
imperialistic contacting line can be obtained as indicated in
Fig. 2. In this algorithm, not only different random values
are used, but also the orthogonal colony-imperialistic con-
tacting line is utilized for deviating the colony as follows:

{x}new = {x}old + β × d × {rand} ⊗ {V1} + U (−1, +1)

× tan(θ) × d × {V2} , {V1} · {V2}=0, ‖{V2}‖=1

(8)

where {V2} is perpendicular to {V1}, and therefore from
now on this algorithm will be called orthogonal imperialist
competitive algorithm (OICA). To implement this equation,
we must determine the vector {V2}. After obtaining {V1}
(with start point of the location of the colony and the direc-
tion toward the imperialist location), similarly it is possible
to find the image of the vector β × d × {rand} ⊗ {V1} on
{V1}. This is shown by {V ′} in the figure. Now β × d ×
{rand}⊗{V1}−{

V ′} results in the direction of {V2}. Since

vector must be crossed the point obtained from the two first
terms, we use a random generator shown by U (−1, +1) for
the third term of the (8) which changes its value in addition
to its direction by using the negative values.

3 Chaotic imperialist competitive algorithm

Chaos theory as a new emerging theory has been consid-
ered in various scientific in recent decades. A chaotic map is
a deterministic pseudo-randomness. Hence, chaos could be
considered as a serious alternative of randomness for those
systems which their behaviors appear strange (Yousefpoor
et al. 2008). Chaos theory is based on two principles. The
first principle is that simple systems will exhibit complex
behavior which cannot be explained using conventional the-
ories. The second principle is that complex systems will
exhibit behavior which will seem random and unstructured,
but it has an underlying order. In other word, chaos is a
bounded unstable dynamic behavior that includes infinite
unstable periodic motions in nonlinear systems. Therefore,
currently chaos as a kind of dynamic behavior of nonlin-
ear systems has raised enormous interest in optimization
theory (He et al. 2009). In random-based optimization

Table 3 Performance
comparison for the 25-bar
spatial truss

Rajeev & Schutte & Kaveh & Talatahari Present study

Krishnamoorthy Groenwold PSACO HPSACO HBB–BC CICA-1

GA (1992) PSO (2003) (2009a) (2009a) (2009b)

Best Weight (kg) 247.66 247.30 247.23 247.20 247.28 247.38

Average Weight (kg) N/A 248.04 N/A 247.44 247.50 248.81

No. of analyses N/A 9,596 28,850 9,875 12,500 5,000



Chaotic imperialist competitive algorithm for optimum design of truss structures

Fig. 8 A 56-bar dome spatial truss structure

algorithms, the methods using chaotic variables instead of
random variables are called chaotic optimization algorithm
(COA). Optimization algorithms based on the chaos the-
ory are stochastic search methodologies that differ from any
of the existing evolutionary computation and swarm intel-
ligence methods. Due to the non-repetition of chaos, it can

carry out overall searches at higher speeds than stochastic
searches that depend on probabilities (Coelho and Mariani
2008).

Here we present a chaotic imperialist competitive algo-
rithm. When a random number is needed by the CICA
algorithm, it can be generated by iterating one step of the
chosen chaotic map (cm) being started from a random initial
condition at the first iteration of the CICA. One-dimensional
noninvertible maps are the simplest systems with capabil-
ity of generating chaotic motion. The choice of chaotic
sequences can justified theoretically by their unpredictabil-
ity, corresponding to their spread-spectrum characteristic
and ergodic properties. The chaotic maps that generate
chaotic sequences in CICA steps used in the experiments
are listed in the Table 1. New chaotic ICA (CICA) algorithm
may simply be described as follows:

Parameter {rand} and U (−1, +1) of (8) are modified by
the selected chaotic maps and the assimilation (moving the
colonies of an empire toward the imperialist) equation is
modified by:

{x}new = {x}old + β × d × {cm} ⊗ {V1} + cm × tan(θ)

× d × {V2}, {V1} · {V2} = 0, ‖{V2}‖ = 1 (9)

where cm is a chaotic variable based on the sinusoidal map
for CICA-1, logistic map for CICA-2, zaslavskii map for
CICA-3 and tent map for CICA-4. Figure 3 presents a
pseudo-code for the CICA methods.

In designing a meta-heuristic, two contradictory criteria
must be taken into account: exploration of the search space
(diversification) and exploitation of the best solutions found
(intensification). Promising regions are determined by the
obtained “good” solutions. In intensification, the promising
regions are explored more thoroughly in the hope to find
better solutions. In diversification, non explored regions
must be visited to be sure that all regions of the search space

Table 4 Optimal design
comparison for the 56-bar dome
truss

Element group Optimal cross-sectional areas (mm2)

ICA OICA CICA-1 CICA-2 CICA-3 CICA-4

1 200.00 200.00 200.00 200.00 200.00 200.00

2 799.78 805.03 798.54 789.41 807.65 790.76

3 1425.84 1423.39 1424.38 1403.87 1419.77 1405.94

4 588.11 588.35 588.91 591.10 587.07 591.24

5 1081.78 1075.07 1082.49 1088.69 1075.56 1084.50

6 892.09 900.44 894.64 913.02 899.34 916.42

7 502.14 499.41 501.43 508.13 501.40 506.56

Best weight (kg) 546.14 546.15 546.13 546.16 546.15 546.15

Average Weight (kg) 547.91 546.24 546.21 546.31 546.24 546.34

SD (kg) 5.791 0.85 0.49 0.62 0.56 0.59



S. Talatahari et al.

Fig. 9 Convergence rate
comparison between the
different CICA algorithms for
the 56-bar spatial truss structure
(average of 30 different runs)

400 1,000 2,000 3,000 4,000 5,000

1.975

1.98

1.985

1.99

1.995

2
x 1x 10

7

Number of Analyses

W
ei

gh
t

 

 

CICA-1
CICA-2
CICA-3
CICA-4

2,000 3,000 4,000 5,000
1.973

1.974

1.975

1.976

1.977 x 10
7

Number of Analyses

 

 

Fig. 10 A 200-bar spatial truss structure

are evenly explored and that the search is not confined to
only a reduced number of regions (Talbi 2009).

Imperialist countries started to improve their colonies by
moving all the colonies toward the imperialist using (8). In
order to improve the searching abilities of the algorithm
around the imperialist, we use chaotic variables instead of
random variables in (9). In fact, however, random param-
eters of the ICA may affect the algorithm performance and
cannot ensure the optimization’s ergodicity entirely in phase
space, because they are random in original ICA. That is
why; these parameters may be selected chaotically by using
chaotic maps because of the ergodic property of chaotic
variables.

4 The CICA method for optimal design of truss
structures

Unlike exact methods, meta-heuristics allow to tackle large-
size problem instances by delivering satisfactory solutions
in a reasonable time. There is no guarantee to find global op-
timal solutions or even bounded solutions. Meta-heuristics
have received more and more popularity in the past 20
years. Application of meta-heuristics falls into a large num-
ber of areas; one of them is size optimization of truss

Table 5 Performance comparison for the 200-bar planer truss problem

ICA OICA CICA-1

Best weight (kg) 12,082.5 11,802.2 11,486.3

Average Weight (kg) 12,553.6 12,203.8 11,828.8

SD (kg) 1,870.5 1,025.6 544.7



Chaotic imperialist competitive algorithm for optimum design of truss structures

structures. Size optimization of truss structures involves
determining optimum values for member cross-sectional
areas, Ai , that minimizes the structural weight W . This min-
imum design should also satisfy the inequality constraints
that limit design variable sizes and structural responses. The
optimal design of a truss can be formulated as:

minimize W ({x}) =
n∑

i=1

γi .Ai .Li (10)

subject to

δmin ≤ δi ≤ δmax i = 1, 2, . . . , m

σmin ≤ σi ≤ σmax i = 1, 2, . . . , n

Amin ≤ Ai ≤ Amax i = 1, 2, . . . , ng

(11)

where W ({x}) = weight of the structure; n = number of
members making up the structure; m = number of nodes;
ng = number of groups (number of design variables); γi =
material density of member i ; Li = length of member i ;
Ai = cross-sectional area of member i chosen between Amin

and Amax; min = lower bound and max = upper bound; σi

and δi = the stress and nodal deflection.
Here, an appropriate penalty function is utilized to handle

the constraints. In utilizing penalty functions, if the con-
straints are between the allowable limits, the penalty is zero;
otherwise the amount of penalty is obtained by dividing the
violation of allowable limit to the limit itself. After analyz-
ing a structure, the deflection of each node and the stress
in each member are obtained. These values are compared

Table 6 Optimal design comparison for the 200-bar planar truss

Element group HS SA AL GA Present study

ICA OICA CICA

A1∼4 0.806 0.941 0.954 2.238 0.665 0.645 0.677

A5, 8, 11, 14, 17 6.548 6.064 6.096 6.974 6.107 6.102 6.956

A19∼24 0.684 0.645 0.645 0.645 0.664 0.645 1.126

A18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.703 0.645 0.645 0.645 0.665 0.645 0.680

A26, 29, 32, 35, 38 12.49 12.52 12.55 13.82 19.54 12.21 12.64

A6, 7, 9, 10, 12, 13, 15, 16,27,28, 30, 31, 33, 34, 36, 37 1.729 1.910 1.923 2.239 1.461 1.740 2.171

A39∼42 0.671 0.645 0.645 0.645 0.645 0.645 0.677

A43, 46, 49, 52, 55 19.18 20.03 20.15 23.00 27.27 31.19 19.08

A57∼62 0.839 0.645 0.645 2.239 0.664 3.281 0.677

A64, 67, 70, 73, 76 26.99 26.48 26.60 31.00 33.92 25.69 29.68

A44, 45, 47, 48, 50, 51, 53, 54,65,66, 68, 69, 71, 72, 74, 75 2.555 2.600 2.574 2.839 2.073 2.984 2.582

A77∼80 2.845 1.232 0.645 2.839 2.280 0.646 1.298

A81, 84, 8790, 93 33.46 35.02 34.79 38.40 32.21 34.38 33.82

A95∼100 1.232 0.645 0.645 2.239 3.479 4.674 0.677

A102, 105, 108, 111, 114 40.26 41.47 41.25 42.40 38.59 39.88 49.23

A82, 83, 85, 86, 88, 89,91, 92,103,104, 106, 107,109, 110, 112, 113 4.510 3.697 3.394 6.155 4.560 4.986 2.946

A115∼118 0.742 0.852 2.806 2.239 0.665 0.645 0.677

A119, 122, 125, 128, 131 50.09 51.43 51.29 55.00 48.42 64.16 48.69

A133∼138 0.645 0.645 0.645 0.645 0.645 0.645 3.758

A140, 143, 146, 149, 152 56.94 57.87 57.74 60.00 54.80 58.48 54.61

A120, 121, 123, 124, 126, 127,129,130, 141, 142, 144, 145, 147, 148,150, 151 4.503 4.542 5.541 6.155 3.676 5.356 5.426

A135∼156 10.04 2.703 0.968 11.38 9.433 1.635 0.677

A157, 160, 163, 166, 169 70.84 70.06 70.90 85.81 65.54 71.81 67.47

A171∼176 0.845 0.645 0.645 2.239 0.665 1.497 3.360

A178, 181, 184, 187, 190 78.32 76.52 77.35 85.81 72.17 78.75 73.57

A158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 186,188, 189 10.56 6.671 5.890 13.82 8.183 7.216 7.067

A191∼194 32.28 43.10 42.98 31.00 46.34 35.62 44.34

A195, 197, 198, 200 60.35 69.74 69.68 60.00 78.49 63.08 66.46

A196, 199 97.35 89.29 89.16 110.8 85.75 91.83 86.98

Best weight (kg) 11531.3 11531.7 11542.4 12947.3 12082.5 11802.2 11486.3

Number of analyses 48,000 9,650 N/A 51,360 15,000



S. Talatahari et al.

to the allowable limits to calculate the penalty functions as
(Kaveh et al. 2008)

⎧⎪⎪⎨
⎪⎪⎩

δmin
i < δi < δmax

i ⇒ 	
(i)
δ = 0

δmin
i > δi or δmax

i < δi ⇒ 	
(i)
δ = δi −δ

min / max
i

δ
min / max
i

i = 1, 2, . . . , m

(12)

⎧⎪⎪⎨
⎪⎪⎩

σmin
i < σi < σmax

i ⇒ 	
(i)
σ = 0

σmin
i > σi or σmax

i < σi ⇒ 	
(i)
σ = σi −σ

min / max
i

σ
min / max
i

i = 1, 2, . . . , n

(13)

In this method, the aim of the optimization is redefined by
introducing the cost function as

fcos t ({x}) =
(

1 + ε1 ·
∑

	
)ε2 × W ({x}) (14)

where 	σ and 	δ = the value of stress penalty and the nodal
deflection penalty, respectively. The constant ε1 and ε2 are
selected considering the exploration and the exploitation
rate of the search space. Here, ε1 is set to unity, ε2 is selected
in the way that it decreases the penalties and reduces the
cross-sectional areas. Thus, in the first steps of the search
process ε2 is set to 1.5, and ultimately increased to 3
(Kaveh et al. 2008).

From the structural design point of view, the CICA deter-
mines the appropriate sections for each group of elements
so that with these set of sections the response of the truss is
within the limitations imposed by the design condition when
it has the minimum weight. The chaotically movement of
colonies towards their relevant imperialist states along with

competition among empires and also the collapse mecha-
nism will hopefully cause all the countries to converge to a
state in which there exist just one empire in the world and all
the other countries are colonies of that empire. In this ideal
new world, colonies will have the same position and power
as the imperialist.

5 Design examples

In this section, some truss structures are optimized utilizing
the present method. The optimization examples include:

• A 25-bar spatial truss;
• A 56-bar dome truss;
• A 200-bar planar truss;
• A 244-bar transformation tower.

The examples are solved by the standard ICA, improved
ICA (OICA) and the present ICA (CICA) and the results are
compared. For two first examples all variants of the CICA
are utilized while for the other ones only the best one is
selected to evaluate. Ncountry is set to 20 and 30 for the first
two examples and for the later examples, respectively. The
algorithms are coded in Matlab and a direct stiffness method
is utilized to analyze the structures.

5.1 25-bar spatial truss

The topology and nodal numbers of a 25-bar spatial truss
structure are shown in Fig. 4. The material density is con-
sidered as 2767.990 kg/m3 and the modulus of elasticity is
taken as 68,950 MPa. Twenty five members are categorized
into eight groups, as: (1) A1, (2) A2∼5, (3) A6∼9, (4) A10∼11,

Fig. 11 Convergence rate
comparison between the three
algorithms for the 200-bar
spatial truss structure (average
of 30 different runs)

0 3,000 6,000 9,000 12,000 15,000
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 10

4

Number of Analyses

W
ei

gh
t

 

ICA
OICA
CICA



Chaotic imperialist competitive algorithm for optimum design of truss structures

(5) A12∼13, (6) A14∼17, (7) A18∼21, and (8) A22∼25. The
detailed information related to the loading condition and
constraints can be found in Kaveh and Talatahari (2010a).

Tuning the utilized parameters for a meta-heuristic algo-
rithm is a very important issue. In order to fulfill this, herein
a sensitive study on two parameters of the algorithm is
performed utilizing the 25-bar spatial truss. For various val-
ues of β and tan(θ), this example is solved several times
(20 times for each value of β and tan(θ)) and the average
weight of designs is shown in Fig. 5. This figure shows that
β > 1 make the colonies to move closer to the imperial-
ist state from both sides while a very close value to 1 for β

reduces the search ability of the algorithm. As shown in the
figure, β = 2 and tan(θ) = 1 are suitable values for the
CICA-1 algorithm. These parameter values are used for all
other presented examples.

In Table 2, the optimum cross sectional areas and sta-
tistical information of the solutions obtained by the ICA,
OICA and the different variants of the CICA are presented.
Figures 6 and 7 provide a comparison of the convergence
rates of the ICA, OICA, CICA-1, CICA-2, CICA-3 and
CICA-4 algorithms. Comparing the results of different
chaotic maps, it can be concluded that CICA have somewhat
shown better performance when Sinusoidal and Zaslavskii
maps have been used for generating chaotic signals. The
best weight obtained by the CICA-1 is 247.38 kg, and this
shows that the CICA-1 has the best performance than other
algorithms. As another investigation and for testing the de-
gree of consistency from the Table 2, it can be seen that the
standard deviation of the results by CICA-1 in 30 indepen-
dent runs is the smallest one. Table 3 compares the optimum
results obtained by the CICA-1 and the GA (Rajeev and
Krishnamoorthy 1992), the PSO (Schutte and Groenwold
2003), the PSACO and HPSACO (Kaveh and Talatahari
2009a) and HBB–BC (Kaveh and Talatahari 2009b). The
differences between the results are very small, however,
the present method needs small number of analyses to find
the optimum result.

5.2 56-bar dome truss

A 56-bar dome truss structure is shown in Fig. 8. Mem-
bers of the dome are initially collected into 3 groups as
given by Kelesoglu (2007), but in this study all members
are re-grouped into 7 groups (see Fig. 8). The value of the
modulus of elasticity is taken as 210 kN/mm2 and the mate-
rial density is 2767.990 kg/m3. The displacement limits
as well as the considered loading cases are taken from
Kelesoglu (2007). The minimum cross-sectional area of all
members is 200mm2 and the maximum cross sectional area
is 2000 mm2.

Table 4 shows the statistical results and the optimum
cross sectional areas for the 56-bar dome truss using the

proposed method. The CICA-1 has achieved the best solu-
tion after 5,000 analyses and found an optimum weight
of 546.13 kg. Although the differences between the best
results of these ICA-based algorithms are small, however
the new CICA methods can reduce the value of standard
deviation and in this way the reliability of the algorithm is
increased considerably. As it can be seen from Table 4, the
CICA methods reduce the standard deviation almost ten and
two times in comparison with the standard and improved

Fig. 12 A 244 -bar transformation tower truss



S. Talatahari et al.

Fig. 13 Convergence rate
comparison between the best
results of three algorithms for
the 244-bar truss structure

0 3,000 6,000 9,000 12,000 15,000
2400

2500

2600

2700

2800

2900

3000

Number of Analyses

W
ei

gh
t

 

ICA
OICA
CICA

ICA algorithms, respectively. Figure 9 compares the conver-
gence characteristic curve of four different CICA methods.

5.3 200-bar planar truss

The 200-bar planar truss structure is shown in Fig. 10. The
200 structural members of this planar truss are categorized
as 29 groups (design variable) using symmetry. The paper of
Lee and Geem (2004) presents the constraints and loading
conditions.

The minimum weight and the statistical values of the
best solution obtained by CICA methods are reported in
Table 5 in which the standard deviation of the CICA-1
is 1.9 and 3.4 times less than the ones obtained by the
standard ICA and OICA. The minimum weight and the val-
ues of the cross sectional area obtained by the standard
ICA, OICA, CICA-1 as well as some other previous studies
reported in the literature such as harmony search (HS) (Lee
and Geem 2004), a modified simulated annealing algorithm
(Lamberti 2008) an augmented Lagrangian method (Coster
and Stander 1996) and an improved genetic algorithm
(Togan and Daloglu 2008) are presented in Table 6. As
shown in the table, the proposed CICA method can find the
best design among the other existing studies and the best
weight of the CICA is 11,486.3 kg. It is worth pointing out
that the CICA-1 method requires 15,000 searches to reach
the optimum design. The convergence characteristic curve
for this case using the ICA, OICA and CICA is shown in
Fig. 11.

5.4 A 244-bar transformation tower

The final example is a 244-bar transmission tower shown
in Fig. 12, (Kaveh and Talatahari 2009a). Members of
the transmission tower are linked into 32 groups (design

variables). Other information related to this example is
presented in Kaveh and Talatahari (2009a).

The maximum number of analyses is 15,000 for the
ICA, OICA and CICA-1. The CICA achieves the best
solution 2,478.95 kg while the OICA and ICA algorithm
achieves 2,517.29 kg and 2,562.09 kg respectively. The
HPSACO and PSOPC algorithms achieved 2,415.02 kg
and 2,652.56kg, respectively (Kaveh and Talatahari 2009a).
Although, the HPSACO finds a 2.5% lighter design, how-
ever, it is worth to note that the HPSACO utilizes the PSO
with two auxiliary tools (ACO and HS) and if one add
these tools to CICA, obviously the resultant method will
be improved. Figure 13 compares the convergence history
for the minimum weight of 244-bar transformation tower
solved by different ICA-based methods.

6 Conclusion

Recently, chaos is found to have a great potential in the the-
ory of optimization. An irregular motion and unpredictable
random behavior exhibited by a deterministic nonlinear
system are the major positive properties of chaotic sys-
tems, and therefore they can be utilized instead of different
random number generators available in of the stochastic
optimization algorithms.

This paper combines the benefits of chaotic and the impe-
rialist competitive algorithm to determine optimum design
of truss structures. Imperialist competitive algorithm, a
socio-politically motivated algorithm, contains some agents
or countries and movement of the colonies and imperialistic
competition are the two main steps of this algorithm. Here
we modified the movement step by using chaotic maps. To
fulfill this aim, the orthogonal imperialist competitive algo-
rithm, as an improved ICA with two movement steps, and



Chaotic imperialist competitive algorithm for optimum design of truss structures

four different chaotic maps containing Sinusoidal, Logistic,
Zaslavskii and Tent maps are utilized.

These different chaotic maps are investigated by solv-
ing two benchmark truss examples involving 25- and 56-bar
trusses to recognize the most suitable one for the present
algorithm. The results show that the use of Sinusoidal map
results in a better performance for the CICA than others.
Two other larger examples are also considered to obtain
more clear details about the performance of the new algo-
rithm. These are 200- and 244-bar trusses with 29 and 32
groups (design variables), respectively. Almost for all exam-
ples, the performance of the new algorithm is far better
than the original ICA and OICA; especially when the stan-
dard deviations of the results are compared. The standard
deviation of the new algorithm is much better than other
ICA-based algorithms and this illustrates the high ability of
the new algorithm. Due to the simplicity and potency of the
present method, it seems that it can easily be utilized for
many engineering problems to find the optimum designs.

Acknowledgments The second author is grateful to the Iran
National Science Foundation for the support.

References

Alatas B (2010) Chaotic harmony search algorithms. Appl Math
Comput 216:2687–2699

Antoniou I, Akishina EP, Ivanov VV, Kostenko BF, Stalios AD (2003)
Cellular automata study of high burn-up structures. Chaos, Soli-
tons Fractals 28:1111–1128

Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic
competition. In: Proceedings of IEE congress on evolutionary
computation, Singapore, pp 4661–4667

Chen G, Dong X (1998) From chaos to order: methodologies, perspec-
tives and applications. World Scientific, Singapore

Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically
inspired algorithm for engineering design optimization. Expert
Syst Appl 34:1905–1913

Coster IE, Stander N (1996) Structural optimization using augmented
Lagrangian methods with secant Hessian updating. Struct Optim
12:113–119

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization
by a colony of cooperating agents. IEEE Trans Syst Man Cybern
Part B 26(1):29–41

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm
theory. In: Proceedings of the sixth international symposium on
micro machine and human science, Nagoya, Japan, pp 1942–
1948

Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimiza-
tion algorithm; harmony search. Simulation 76:60–68

Harb AM, Abdel-Jabbar N (2003) Controlling hopf bifurcation and
chaos in a small power system. Chaos, Solitons Fractals 18:1055–
1063

He Y, Zhou J, Xiang X, Chen H, Qin H (2009) Comparison of different
chaotic maps in particle swarm optimization algorithm for long-
term cascaded hydroelectric system scheduling. Chaos, Solitons
Fractals 42:3169–3176

Kaveh A, Talatahari S (2009a) Particle swarm optimizer, ant colony
strategy and harmony search scheme hybridized for optimization
of truss structures. Comput Struct 87(5–6):267–283

Kaveh A, Talatahari S (2009b) Size optimization of space trusses using
Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140

Kaveh A, Talatahari S (2010a) Optimal design of skeletal structures via
the charged system search algorithm. Struct Multidiscipl Optim
41(6):893–911

Kaveh A, Talatahari S (2010b) Optimum design of skeletal structures
using imperialist competitive algorithm. Comput Struct 88:1220–
1229

Kaveh A, Talatahari S (2010c) Imperialist competitive algorithm for
engineering design problems. Asian J Civil Eng 11(6):675–697

Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimiza-
tion for design of space trusses. Int J Space Struct 23(3):167–181

Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-
structures using genetic algorithm. Adv Eng Softw 38:717–721

Lamberti L (2008) An efficient simulated annealing algorithm for
design optimization of truss structures. Comput Struct 86:1936–
1953

Lee, KS, Geem ZW (2004) A new structural optimization method
based on the harmony search algorithm. Comput Struct 82:781–
798

May R (1976) Mathematical models with very complicated dynamics.
Nature 261:459

Ólafsson S (2006) Metaheuristics. Handbook on Simulation, Hand-
books in Operations Research and Management Science VII,
Elsevier, pp 633–654

Peitgen H, Jurgens H, Saupe D (1992) Chaos and fractals. Springer-
Verlag, Berlin, Germany

Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of struc-
tures using genetic algorithms. J Struct Eng ASCE 118(5):1233–
1250

Schutte JJ, Groenwold AA (2003) Sizing design of truss structures
using particle swarms. Struct Multidiscipl Optim 25:261–269

Talbi EG (2009) Metaheuristics: from design to implementation. John
Wiley & Sons, New Jersey

Tavazoei M, Haeri M (2007) Comparison of different one-dimensional
maps as chaotic search pattern in chaos optimization algorithms.
J Appl Math Comput 187:1076–1085

Togan V, Daloglu AT (2008) An improved genetic algorithm with
initial population strategy and self-adaptive member grouping.
Comput Struct 86:1204–1218

Yousefpoor P, Esfahani MS, Nojumi H (2008) Looking for systematic
approach to select chaos tests. Appl Math Comput 198:73–91

Zaslavskii GM (1978) The simplest case of a strange attractor. Phys
Lett A 69:145–147


	Chaotic imperialist competitive algorithm for optimum design of truss structures
	1 Introduction
	2 Imperialist competitive algorithm
	2.1 Standard imperialist competitive algorithm
	2.2 Improved imperialist competitive algorithm

	3 Chaotic imperialist competitive algorithm
	4 The CICA method for optimal design of truss structures
	5 Design examples
	5.1 25-bar spatial truss
	5.2 56-bar dome truss
	5.3 200-bar planar truss
	5.4 A 244-bar transformation tower

	6 Conclusion

