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a b s t r a c t

This paper investigates a multi-product manufacturer–retailer supply chain where demand of each
product is jointly influenced by price and advertising expenditure. We propose a Stackelberg game
framework under two power scenarios. In the first, we consider the traditional approach where the
manufacturer is the leader. In the latter, we allow the retailer to act as the dominant member of
the supply chain. Bi-level programming approach is applied to find the optimal equilibrium prices,
advertising expenditures and production policies; then several solution procedures, including imperi-
alist competitive algorithm, modified imperialist competitive algorithm, and evolution strategy are
proposed. Finally numerical experiments are carried out to evaluate the effectiveness of models as
well as solution procedures.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A supply chain consists of independent parties which form a
chain of process to convert the raw materials into finished prod-
ucts and make them available to ultimate customers. Today in-
tra/inter supply chain competition has given a special attention
by researchers, e.g. [1–3]. This paper mainly focuses on vertical in-
ter-chain competition. Increasing competition and market global-
ization motivate independent firms in different levels of supply
chain to coordinate their decisions with the goal of gaining mutual
benefit. The two echelon supply chain investigated in this paper
represents a single manufacturer which wholesales multiple prod-
ucts to a retailer, who then sells them to the end customers [4–6].
Many articles have studied channel coordination between manu-
facturer and retailer from different aspects of business decisions,
including pricing, advertising, production, and inventory manage-
ment [7,8]. However studies simultaneously handle more than
one aspect of coordination are sparse. For a comprehensive review
on channel coordination refer to [9].

Some authors have studied the manufacturer–retailer coordina-
tion problem through game theory [10,11]. The condition where
each member attempts to maximize his own profit is described as
non-cooperative game. In a Stackelberg non-cooperative game, the
member with the dominant power (the leader) controls the other
members who follow the leader’s actions. The leader makes the first
move after estimating the reaction of the other members [12]. In
ll rights reserved.
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manufacturer–retailer supply chains, traditionally manufacturer
act as the leader. However, the leading power has shifted from man-
ufacturer to retailer in recent years [13,14].

Reviewing the literature, one can find pricing as a prominent
mechanism for supply chain coordination. Eliashberg and Stein-
berg [15] investigate a two-member channel coordination problem
considering production activities such as product delivery and
inventory policy, along with pricing. Weng [16] presents a single
supplier-multiple buyers coordination model through quantity dis-
counts and franchise fees. He indicates that Stackelberg game can
guarantee perfect coordination in such system. Raju and Zhang
[17] develop a dominant retailer supply chain model using either
quantity discount or two-part tariffs. Yu et al. [18] consider pricing
and order intervals decisions in one manufacturer–multiple retail-
ers supply chain. They model the problem as a Stackelberg game
where the manufacturer is the leader and retailers are followers.

Several studies on supply chain coordination have considered
pricing and advertising decisions simultaneously. Yue et al. [14]
address the problem of cooperative advertisement in a manufac-
turer–retailer supply chain where demand is price sensitive and
the manufacturer, as the dominant member, offers price deduc-
tions to the retailer. He et al. [19] model a stochastic cooperative
advertisement problem through a differential Stackelberg game.
Szmerekovsky and Zhang [20] consider pricing and advertising
coordination through Stackelberg game in a two-tier supply chain
in which demand depends on retail price and advertising expendi-
ture. Two other examples are [8,21]. Esmaeili et al. [22] propose
non-cooperative and cooperative games for the seller–buyer coor-
dination to optimize pricing, advertising and inventory decisions
while demand non-linearly depends on selling price and marketing
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expenditure. Yu et al. [23] apply similar approach in a VMI (vendor
managed inventory) supply chain with one manufacturer and mul-
tiple retailers, using a Manufacturer-Stackelberg game model for
determining the optimal advertising, pricing and inventory
policies.

In this research, we study a multiple-product manufacturer–re-
tailer supply chain where demand is non-linearly influenced by
prices and advertising expenditures. Although nonlinear demand
functions are more real, they have been rarely used in previous
works because of their complexities. We develop two non-
cooperative games. The first scenario considers a situation where
manufacturer, as the leader of the channel, controls the common
production interval and wholesale prices, which are followed by
the retailer through optimizing its own selling prices and advertis-
ing expenditures. In second scenario, we adopt a similar approach
for the situation that the retailer holds the leading power. In addi-
tion, we consider budget constraints on production quantity and
adverting investment.

The above games are formulated through bi-level optimization.
Due to the NP-hard nature of the bi-level models, a solution
procedure based on imperialistic competitive algorithm (ICA) is
proposed to search the equilibrium solutions. We modify ICA per-
formance through some additional mechanisms. An exhaustive
grid search and an evolution strategy (ES) algorithm are also
adopted for validation purposes.

The rest of the paper is organized as follows. Section 2 describes
the assumptions, objectives, decision variables, constraints and
parameters of the manufacturer–retailer supply chain problem.
In Section 3, bi-level formulations of the Stackelberg games are
developed under the two scenarios. Section 4 proposes solution
procedures for solving the Stackelberg games. Section 5 is devoted
to experimental results and finally Section 6 discusses the conclud-
ing remarks.

2. Problem description

Consider a two member supply chain where the manufacturer
wholesales multiple products to the retailer, who then sells them
to end customers. We assume that the manufacturer decides on
the common production interval T and the unit wholesale prices
wi of each product i, i = 1,2, . . . ,n. On the other side, the retailer
controls the unit retail prices pi and the advertising expenditures
ai for each product i. The demand Di(pi,ai) for each product i is a
joint non-linear function of the retail prices and advertising expen-
ditures as follows (refer to [22]):

Diðpi; aiÞ ¼ ki � p�ai
i � abi

i ; ð1Þ
where ki is a positive scaling parameter. ai(ai > 1) and bi(0 < bi < 1,
bi + 1 < ai) are the price elasticity and advertising expenditure elas-
ticity, respectively.

We assume a common production interval T in which all the
products must be manufactured. This means that all the products
have the same production cycle time (i.e. T = Ti). Therefore, we
can calculate the lot size of product i in each interval as
Qi = Di � T. The manufacturer makes a profit equal to the whole-
sales revenue minus the production cost, setup and holding
costs. Considering parameters Asi

as the unit setup cost for each
product i, Csi

as the unit production cost, and q as the holding
cost percentage per unit, the manufacturer’s objective function
can be defined as:

Psðwi; TÞ ¼
Xn

i¼1

wi � Diðpi; aiÞ �
Xn

i¼1

Csi
� Diðpi; aiÞ �

1
T
�
Xn

i¼1

Asi

� 1
2
� q � T �

Xn

i¼1

Csi
� Diðpi; aiÞ � u�1

i ; ð2Þ
where ui is a positive constant such that ui = ri/Di and ri reflects the
production rate for product i. We assume that the manufacturer pro-
duces Qi units of product i and then dispatches the whole lot to the
retailer. Inasmuch as the manufacturer permits no shortages, the
production rate must be at least equal to the expected demand rate
(i.e. "i, ri P di). In such multiproduct manufacturing system, ifPn

i¼1Qi=ri 6 1, then there will exist a feasible time interval, T, in
which all products can be manufactured. Thus, we have

Pn
i¼1u�1

i 6 1.
Furthermore, the manufacturer can spend at most Bs units of

budget for his production. Thus, he has a constraint defined as
follows:
Xn

i¼1

Csi
� T � Diðpi; aiÞ 6 Bs: ð3Þ

The retailer determines the selling prices and advertising expendi-
tures in order to maximize his benefit. The retailer’s profit can be
calculated as the sales revenue minus the purchasing cost, advertis-
ing cost, ordering and holding costs, given as follows.

Pbðpi; aiÞ ¼
Xn

i¼1

pi � Diðpi; aiÞ �
Xn

i¼1

wi � Diðpi; aiÞ �
Xn

i¼1

ai � Diðpi; aiÞ

� 1
T
�
Xn

i¼1

Abi
� 1

2
� q � T �

Xn

i¼1

wi � Diðpi; aiÞ; ð4Þ

where parameter Abi
specifies the retailer’s unit ordering cost for

product i. The holding cost is expressed as a percentage of purchase
cost, multiplying by 1/2 to obtain the average inventory value for
each product. In addition, the amount of money devoted to adver-
tising must be within a given budget constraint Bb. This constraint
can be expressed as follows:

Xn

i¼1

ki � p�ai
i � abiþ1

i 6 Bb: ð5Þ
3. Bi-level programming formulation

Bi-level programming approach provides a framework to deal
with situations where a leader firm incorporates within its decision
process the reaction of a follower firm to its course of action [24]. Bi-
level problems are closely associated with Stackelberg games and
Mathematical Programs with Equilibrium Constraints (MPEC),
which are both characterized by two levels of optimization problems
where the constraint region of the upper level problem is implicitly
determined by the lower level optimization problem (refer to [25]).
In this section, we model the interactions between the manufacturer
and the retailer through bi-level programming under two power sce-
narios: Manufacturer-Stackelberg and Retailer-Stackelberg.

3.1. The Manufacturer-Stackelberg (MS) model

Here we consider the manufacturer as the leader and the retai-
ler as the follower. The MS model can be formulated as a bi-level
program where the manufacturer determines (w1,w2, . . . ,wn) and
T at the upper level, subject to his production budget constraint.
Then at the lower level, the retailer reacts by choosing optimal
prices and advertising policies, based on his own optimization
model. Thus, the MS model can be expressed as follows:

Upper-level problem:

maxw;TPsðwi; TÞ ¼
Xn

i¼1

wi � Diðpi; aiÞ �
Xn

i¼1

Csi
� Diðpi; aiÞ � T�1 �

Xn

i¼1

Asi

� 1
2
� q � T �

Xn

i¼1

Csi
� Diðpi; aiÞ � u�1

i ð6Þ

Subject to
Xn

i¼1

Csi
� T � Di pi; aið Þ 6 Bs: ð7Þ



Step 1. (upper-level problem)
Produce some initial x as solutions of the leader’s problem.

Step 2. (lower-level problem)
Optimize the follower’s actions for each x and return y*s to the leader’s model.

Step 3. (upper-level problem)
Evaluate the leader’s benefit value for each (x,y*).

Step 4. (upper-level problem)
Move each x to a new position and go to step 2 until x* is achieved (a proper
stop criterion is met).

Fig. 1. Steps of the solution procedure.
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Lower-level problem:

maxp;aPbðpi; aiÞ ¼
Xn

i¼1

pi � Diðpi; aiÞ �
Xn

i¼1

wi � Diðpi; aiÞ

�
Xn

i¼1

ai � Diðpi; aiÞ � T�1 �
Xn

i¼1

Abi

� 1
2
� q � T �

Xn

i¼1

wi � Diðpi; aiÞ ð8Þ

Subject to
Xn

i¼1

ki � p�ai
i � abiþ1

i 6 Bb: ð9Þ

The optimal solution of this structure is called the Stackelberg
Equilibrium.

3.2. The Retailer-stackelberg (RS) model

The RS model assumes that the retailer holds the manipulative
power and acts as the leader. Similar to the previous section, the RS
model can be formulated as a bi-level program in which the retai-
ler announces the price vector (p1,p2, . . . ,pn) and the advertising
expenditure vector (a1,a2, . . . ,an) at the upper level and the manu-
facturer determines the optimal wholesale prices w�1;w

�
2; . . . ;w�n

� �
and common production interval T⁄ in response. Thus, the RS mod-
el can be expressed as follows:

maxp;aPbðpi; aiÞ ¼
Xn

i¼1

pi � Diðpi; aiÞ

�
Xn

i¼1

wi � Diðpi; aiÞ �
Xn

i¼1

ai � Diðpi; aiÞ � T�1 �
Xn

i¼1

Abi

� 1
2
� q � T �

Xn

i¼1

wi � Diðpi; aiÞ ð10Þ

Subject to ðW; TÞ 2 arg max Psðwi; TÞ ¼
Xn

i¼1

wi � Diðpi; aiÞ

�
Xn

i¼1

Csi
� Diðpi; aiÞ � T�1 �

Xn

i¼1

Asi

� 1
2
� q � T �

Xn

i¼1

Csi
� Diðpi; aiÞ � u�1

i ;

ð11Þ
Xn

i¼1

ki � p�ai
i � abiþ1

i 6 Bb; ð12Þ

Xn

i¼1

Csi
� T � Diðpi; aiÞ 6 Bs: ð13Þ

Due to the nonlinear functions involved in the upper and lower lev-
els problems, both the MS and RS models are NP-hard. To tackle this
problem, several solution procedures are proposed in the following
section to search the optimal Stackelberg equilibrium solutions of
the games.

4. Solution procedures

Consider a bi-level model:

max
x;y

f ðx; yÞ ð14Þ

s:t:ðx; yÞ 2 X ð15Þ
y 2 SðxÞ; ð16Þ

where

SðxÞ ¼ argmaxygðx; yÞ ð17Þ
s:t:ðx; yÞ 2 Y : ð18Þ

Our solution procedure starts with an initial guess of the optimal
upper-level decision value x and moves this initial solution through
an exploratory process to achieve a new solution. In each iteration,
by solving the lower-level problem, the optimal reaction y⁄ is ob-
tained and returned to the upper-level model. This procedure con-
tinues until an optimal or near-optimal solution is reached for the
upper level problem. Fig. 1 depicts the steps of the solution proce-
dure for solving bi-level programs.

In this section, first we propose an ICA algorithm to solve
Stackelberg games. Then we develop a Modified ICA (MICA) using
some additional mechanisms in order to reach the high quality
solutions. An ES algorithm is also applied for comparison purpose.

4.1. ICA method

ICA is a new evolutionary global search algorithm using socio-
political process of imperialism and imperialistic competition as
a source of inspiration. It has been successfully implemented to a
range of optimization problems and shown good performance in
both convergence rate and global optima achievement [26–31].
ICA starts with an initial population of individuals, each called a
country. Some of the best countries are selected as imperialists
and the rest form colonies which are then divided among imperi-
alists based on imperialists’ power. After forming the initial em-
pires, competition begins and colonies move towards their
relevant imperialists. During competition, weak empires collapse
and powerful ones take possession of more colonies. At the end,
there exists only one empire while the position of imperialist
and its colonies are the same. For a detailed description refer to
[26]. In the following, we explain the steps of ICA dealing with
MS and RS bi-level models.

4.1.1. Solution representation
Each individual X is called a country and represented as an array

of upper level variables. In the MS game, each country is consid-
ered as an n + 1 dimensions array. The n first positions of the array
include wholesale price variables wi, and the last position refers to
production cycle T. We initialize the population by generating Npop.
The Nimp best countries are then chosen as imperialists. The values
of wi and T are randomly selected from the intervals ½Csi

;15Csi
� and

½0;Bs=
Pn

i¼1Csi
�, respectively. On the other side, in the RS game, each

2 � n dimensions array; the n first positions refer to retail prices pi

and the rest consist advertising expenditures ai. The initial popula-
tion involves Npop countries which are generated randomly such
that pi 2 ½Csi

;50Csi
� and ai 2 [0,pi]. Fig. 2 illustrates the solution rep-

resentation for MS and RS games. We assume Npop = 50 � n and
Nimp = 10 � n for the MS game as well as Npop = 80 � n and Nimp = 8 � n
for the RS game.

4.1.2. Objective function evaluation and constraint handling
To assess how much a solution is fit to the optimization pur-

pose, a fitness function is evaluated for any candidate solution. In
the MS game, for a given solution (individual) of the manufacturer
model, the optimal values of the retailer’s variables are obtained
through solving the lower-level model. Having determined values
of the entire variables, we can calculate the fitness value for a given
individual as follows:



Fig. 2. Solution representation for the MS and RS games.
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f ¼
Xn

i¼1

fwi � Diðpi; aiÞ � Csi
� Diðpi; aiÞ � T�1 � Asi

� 1
2
� q � T � Csi

� Diðpi; aiÞ � u�1
i g

�M � maxð0;
Xn

i¼1

Csi
� T � Diðpi; aiÞ � BsÞ: ð19Þ

The first term in Eq. (19) is the manufacturer’s benefit value while
the second term penalizes infeasible solutions. The penalty coeffi-
cient M is assumed to be a large number. Using penalty term to deal
with constraints is a common approach which has been used in
many researches, e.g. [32–35].

In the RS game, since the upper-level constraint depends
only on self variables, we apply a constraint handling process to
ensure the feasibility of a candidate solution. In this way, ifPn

i¼1ki � p�ai
i � abiþ1

i � Bb > 0, we choose a product i randomly
and set pi = 1.001 � pi and ai = 0.999 � ai. This process continues
until the constraint holds. Applying this approach to any candidate
solution X, one can find the nearest feasible solution to that candi-
date solution such that the constraint is often met the whole bud-
get (i.e.

Pn
i¼1ki � p�ai

i � abiþ1
i � Bb ¼ 0Þ, which can lead to good

solutions.
given a feasible candidate solution of the retailer’s model, the

manufacturer’s model is solved and optimal values of variables
are returned to the retailer. The fitness value for each individual
in the RS game is calculated as follows:

f ¼
Xn

i¼1

�
pi � Diðpi; aiÞ � wi � Diðpi; aiÞ

� ai � Diðpi; aiÞ � T�1 � Abi
� 1

2
� q � T � wi � Diðpi; aiÞ

�
: ð20Þ
4.1.3. Creation of initial empires
After evaluating the objectives of all individuals, the Nimp best

countries (countries with greater objective values) are selected as
the imperialists. The remained (Ncol) countries form the colonies
which are then divided among the imperialists based on imperial-
ists’ power.

The normalized power of the jth imperialist (j = 1,2, . . . ,Nimp) is
defined as

PimpðjÞ ¼
fimpðjÞPNimp

i¼1 fimpðiÞ

�����
�����: ð21Þ

Then we can calculate the number of colonies given to the jth impe-
rialist as

NOCimpðjÞ ¼ RoundðPimpðjÞ � NcolÞ: ð22Þ
Fig. 3. Movement of colonies toward their relevant imperialist.
4.1.4. Assimilation
Assimilation refers to the movement of colonies towards the

relevant imperialist. Each colony moves by di units along dimen-
sion i, while di is a random variable with uniform distribution
di � U(0,hi � Di), hi > 1 is a escalating parameter and Di is the
distance between the colony and the imperialist along dimension
i. Fig. 3 illustrates assimilation in a two-dimensional optimization
problem.

Here, the parameter hi is set as follows:

hi ¼
2; i ¼ 1; . . . ;n

1:2; i ¼ nþ 1; . . . ; l

�
; ð23Þ

where l is equal to n + 1 in the MS and 2 � n in the RS problem.

4.1.5. Exchanging the positions of the imperialist and one colony
While moving towards the relevant imperialist, one colony

might reach to a position with greater objective value than the
imperialist. In this case, the imperialist and the colony change their
positions and the algorithm goes on with the new imperialist.

4.1.6. Total power of an empire
The ultimate power of an empire is influenced by the power of

its imperialist as well as its colonies. Therefore, the total power of
an empire is calculated as follows:

TPempðjÞ ¼ fimpðjÞ þ n �
PNOCimpðjÞ

i¼1 fcolðiÞ

NOCimpðjÞ
; ð24Þ

where TPemp(j) is the total power of the empire j and n is a small po-
sitive number. Increasing n highlights the effect of colonies. Here we
set n = 0.1, which has shown good results in most of the ICA
implementations.

4.1.7. Imperialistic competition
Each empire attempts to take the colonies of other empires un-

der its control. During imperialistic competition, weaker empires
are gradually losing their colonies and the powerful ones possess
these colonies. Due to this fact, one of the weakest colonies of
the weakest empire is selected in every iteration and other empires
compete to get the colony. The probability of possession for each
empire POPemp(j) is relative to its total power such that
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POPempðjÞ ¼
TPempðjÞPNimp

i¼1 TPempðiÞ
: ð25Þ

Let a vector POP ¼ ðPOP1; POP2; . . . ; POPNimp
Þ, and a vector R ¼

ðR1;R2; . . . ;RNimp
Þ, where Ris, i = 1,2, . . . ,Nimp, are uniform random

numbers from U(0,1). By subtracting R from POP, we can form
vector S ¼ ðPOP1 � R1; POP2 � R2; . . . ; POPNimp

� RNimp
Þ. Referring to

vector S, the selected colony is given to the empire with maximum
index in S.

Bringing together all we have discussed, Fig. 4 represents the
flowchart of the ICA adopted to solve the Stackelberg games.
4.2. Modified ICA method

The assimilation strategy plays an important role in conver-
gence rate of the ICA as well as the probability of being trapped
in local optima. In this section, several mechanisms are proposed
in order to improve the performance of the original ICA for solving
Stackelberg games.
Table 1
Parameters values set for adaptive assimilation.

Parameter Value

Manufacturer Stackelberg Retailer Stackelberg

i 1/5 1/5
j 3/5 4/5
cdec 0.8 + 0.2⁄rand ( ) 0.7 + 0.3⁄rand ( )
cinc 0.1 + 0.4⁄rand ( ) 0.1 + 0.6⁄rand ( )
4.2.1. Normal distributed assimilation
We propose a new assimilation strategy based on normal distri-

bution. According to this strategy, the amount of movement in any
iteration is chosen from a normal distribution such that di � N(0, -
Di). di denotes the amount of movement for the index i of the col-
ony’s array, and Di is the distance between the colony and the
imperialist along xi. The new position of each colony can be ob-
tained from xtþ1

i ¼ xt
imp;i þ dt

i , where xt
imp;i is the value of ith decision

variable of the imperialist’s array in iteration t and xtþ1
i is the up-

dated value of ith decision variable of the colony’s array in iteration
t + 1. Using this approach colonies are moved towards the relevant
imperialist searching a symmetric area around the imperialists. In
this way, the areas closed to the imperialist are more probable to
search than farther areas.

In fact, this assimilation intensifies searching on the imperial-
ist’s neighbor. Therefore, some portion of the solution space may
be unrewarded during the search process. In order to divert the
search to less explored regions, we apply a diversification strategy
alongside intensification such that colonies are allowed to move in
their self neighbors instead of imperialist’s neighbor with a small
probability c. It means that the position of the colony is updated
as xtþ1

i ¼ xt
i þ dt

i with a probability c. Here, we found that c = 0.1
can result in good convergence to the global optimum.
N

Start

Initialize a population of
individuals for the leader model

Optimize decision variables of
the follower for each individual

Create the initial empires

Move the colonies towards their
relevant imperialist

Optimize the fo
for new

Is there
with high
than its im

Exchange the p
imperialist an

Calculate the tota
emp

Fig. 4. Flowchart of the ICA algorithm propo
4.2.2. Adaptive assimilation
To further improve, we use an adaptive controller which adapts

the movement vector di based on the progress history. This adap-
tion mechanism suggests that the movement vector should be in-
creased if the success rate (i.e., the proportion of colonies reach to a
better position) is high, and it should be decreased if the success
rate is low. It can be expressed as follows:

dtþ1
i ¼

cdec � dtþ1
i PsðtÞ < i

dtþ1
i i 6 PsðtÞ 6 j

dtþ1
i =cinc PsðtÞ > j

8><
>:

9>=
>;; ð26Þ

where Ps(t) defines the success rate at iteration t, dtþ1
i denotes the

movement step size at iteration t + 1, cdec and cinc are damping
parameters which control the changes in movement vector. Adap-
tive assimilation can enhance the ability of escaping from local op-
tima and fast converging to global optimum. Table 1 represents best
values for the parameters for solving MS and RS games.
4.3. ES method

A well-known ES algorithm is also implemented and evaluated
for the solution of Stackelberg models. ES is a nature-inspired opti-
mization method which was originally developed by Rechenberg
[36] and Schwefel [37] to optimize real-value engineering design
problems. ES applies a stochastic iterative procedure to evolve a
population of individuals over a selected number of generations.
Readers are referred to [38–42] for more examples of ES. The basic
concepts used for solving the models through ES is similar to the
procedure followed with ICA. Hence, we only focus on the differ-
ences. The initial population consists of Npop individuals; each indi-
vidual defined by X = (xi,ri), where xis denote the upper level
problem variables and ris are standard deviations used for the
Y

N

Y

N
Yllower’s actions

colonies

a colony
er benefit
perialist?

osition of the
d the colony

l power of each
ire

Give the weakest colony in the
weakest empire to the one with

the most possess likelihood

Is there an empire
with no colonies?

Eliminate this empire

Number of
imperialists = 1?

End

sed for solving the Stackelberg games.
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mutation operation. All individuals are randomly generated and
then mutated. A mutated offspring X 0 ¼ x0i;r0i

� �
is obtained from a

parent X, such that r0i and x0i are defined as follows:

r0i ¼ ri � expðs0 � zþ s � ziÞ; ð27Þ
x0i ¼ xi þ r0i � zi; ð28Þ
N

Y

Start

Initialize a population of individuals
for the leader model

Generate one offspring from
every parent individual through

mutation

Select two random parents from
Nrc and generate two offsprings

through recombination

Optimize the follower’s actions for
every parents and offsprings

Evaluate all individuals

Select individuals for the new
population

Adjust evolution strength based on the
success rate

Termination condition is
met?

End

Fig. 5. Flowchart of the ES algorithm applied for the Stackelberg games.

Table 2
Results on test problems for the RS game.

Problem n Retailer’s benefit

Grid search MICA ICA ES

TEST 1 1 3837 3840.2 3840.2 384
2 7607.5 7618.1 7618.1 761
3 8649.3 8728.8 8718.4 872
4 – 11748.8 11718.8 117
5 – 15521.9 15487.0 155
6 – 16406.2 16315.2 163
7 – 17835.5 17709.8 178
8 – 19573.2 19396.1 195
9 – 21763.4 21571.6 217
10 – 23782.6 23434.8 237

TEST 2 1 1299.1 1300.7 1300.7 130
2 1628.3 1633.0 1633.0 163
3 1312.1 3964.2 3957.6 396
4 – 4687.7 4672.8 468
5 – 5902.1 5874.9 589
6 – 7255.1 7182.1 724
7 – 7589.1 7522.6 758
8 – 8339.3 8247.8 832
9 – 9959 9833.8 993
10 – 10963.7 10816.5 109
where z and zi are chosen from the standard normal distribution. s0

denotes a global coefficient called overall learning rate and s de-
notes a local coefficient called coordinating wise learning rate.
Referring to [39], these coefficients are valued as follows:

s0 ¼ 2
ffiffi
l
p� 	�1

; s ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
2l
pq
 ��1

; ð29Þ

where l defines the number of decision variables xi.
The recombination operator selects Nrc parent individuals and

shares the information such that every two random parents of
Nrc produce two new offsprings. Consider two parents p1 and p2,
the offsprings X0 ¼ x0i;r0i

� �
and X 00 ¼ x00i ;r00i

� �
are obtained through

linear recombination of the parents as follows:

r0i ¼ k � rp1
i þ 1� kð Þ � rp2

i and r00i ¼ ð1� kÞ � rp1
i þ k � rp2

i ;

ð30Þ
x0i ¼ k � xp1

i þ ð1� kÞ � xp2
i and x00i ¼ ð1� kÞ � xp1

i þ k � xp2
i ;

ð31Þ

where k is a random number from U(0,1). Since both the algorithm’s
performance and success probability depend on r, we apply the 1/
5-success rule to control this parameter. Let Ps is the ratio of the
number of successes to the total number of trials. The 1/5-success
rule states that the mutation strength must be reduced if Ps < 1/5,
whereas in the opposite case Ps < 1/5, r must be increased. It can
be expressed by:

rtþ1
i ¼

cdec � rtþ1
i PsðtÞ < 1=5

rtþ1
i PsðtÞ ¼ 1=5

rtþ1
i =cinc PsðtÞ > 1=5

8><
>:

9>=
>;; ð32Þ

where Ps(t) is the success rate, cdec and cinc are the decreasing factor
and increasing factor, respectively. rtþ1

i defines the deviation value
of ith decision variable in generation t + 1 and rtþ1

i is the updated
deviation value of ith decision variable in the next generation. To
avoid zero value for standard deviation, whenever r turns into a
value less than 0.01, r is fixed to 0.01. We found that cdec = 0.7 +
0.3 ⁄ rand and cinc = 0.1 + 0.9 ⁄ rand in the MS game, cdec = 0.8 and
cinc = 0.1 + 0.6 ⁄ rand in the RS game, can lead to best results.

After performing constraint handling process, we evaluate each
X = (xi,ri) by its objective function and sort them. In order to select
individuals for the next generation, we choose best Nrc individuals
GAP(%) Time (s)

MICA-ICA MICA-ES MICA ICA ES

0.2 0 0 93 25 253
8.1 0 0 152 53 327
6.3 0.119 0.029 197 72 405
40.0 0.256 0.075 259 96 496
10.5 0.225 0.073 314 121 563
90.4 0.558 0.096 374 159 695
17.6 0.71 0.100 436 174 819
32.8 0.913 0.207 471 205 863
25.9 0.889 0.173 513 228 997
05.5 1.484 0.325 577 260 1163

0.7 0 0 102 26 241
3.0 0 0 146 49 338
2.9 0.167 0.033 208 74 417
4.2 0.319 0.075 261 99 512
7.2 0.463 0.083 305 126 597
3.7 1.016 0.157 363 154 705
0.4 0.884 0.115 412 181 786
2.4 1.109 0.203 489 217 929
6.6 1.273 0.225 537 231 1045
32.8 1.361 0.283 596 257 1314
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and (Npop � Nrc) individuals are then selected randomly from the
remaining. The algorithm stops if the iteration counter reaches the
maximum number of iterations tmax. We set tmax = 200 � n,
Npop = 10 � n and Nrc = 4 � n. The flowchart of the ES algorithm for
solving the Stackelberg games is shown in Fig. 5.

5. Computational experiments

In this section numerical experiments are developed to evaluate
the ability of the solution procedure to find the optimum equilib-
rium points of MS and RS games. We test the proposed approaches
on a range of problems and summarize the results.

Test problems of different sizes are generated randomly using
the same concepts as employed in [22]. It is assumed that the man-
ufacturer produces a number of products from the range of
n 2 {1,2, . . . ,10} and two random problems are generated for any
members of this set. we arrange the test problems into two classes,
TEST 1 and TEST 2. The elasticity coefficients bi and ai are respec-
Table 3
Results on test problems for the MS game.

Problem No. n Manufacturer’s benefit

Grid search MICA ICA E

TEST 1 1 914.7 915.3 915.3 9
2 1066.5 1070.6 1070.6 1
3 1210.5 1231.7 1231.7 1
4 1901.6 1940.1 1937.3 1
5 – 2485.7 2476.1 2
6 – 2716.9 2705.1 2
7 – 3024.0 3007.0 3
8 – 3219.8 3183.8 3
9 – 3574.5 3537.8 3
10 – 3844.3 3795.3 3

TEST 2 1 207.3 207.7 207.7 2
2 282.4 284.5 284.5 2
3 613.1 627.5 627.5 6
4 876.4 900.8 899.1 8
5 – 1333.5 1327.6 1
6 – 1479.0 1474.2 1
7 – 1640.5 1625.0 1
8 – 1765.3 1741.0 1
9 – 1979.5 1954.6 1
10 – 2196.9 2165.8 2

Table 4
Comparison between the manufacturer and retailer benefit under two Stackelberg scenar

Problem n Retailer’s benefit

Retailer Stackelberg Manufacturer St

TEST 1 1 3840.2 2638.3
2 7618.1 5819.9
3 8728.8 6301.5
4 11748.8 8273.5
5 15521.9 10658.2
6 16406.2 10906.3
7 17835.5 11805.3
8 19573.2 12777.5
9 21763.4 14640.7
10 23782.6 15753.9

TEST 2 1 1300.7 836.8
2 1633.0 1194.6
3 3964.2 2735.6
4 4687.7 3283.9
5 5902.1 4598.0
6 7255.1 5347.9
7 7589.1 5376.3
8 8339.3 6169.5
9 9959 6675.4
10 10963.7 7640.4
tively selected from uniform distributions U(0.05,0.97) and
U(1.5,3) such that ai > bi + 1, and the escalating parameterki is cho-
sen from U(15,000,125,000). The other parameters of MS and RS
games are generated as: Asi

� Uð140; 700Þ;Csi
� Uð1:5; 8:5Þ,

Abi
� Uð40; 500Þ, and q = 0.1.
An exhaustive grid search within the domain of interest is car-

ried out to find near optimum solutions for small instances of size
n = 1 to n = 3 (and also n = 4 in the MS case) while for larger in-
stances grid search is not possible given the average computational
resources currently available. Grid search yields a very good lower
bound for the benefit functions, which can be employed to validate
the results of our solution algorithms. In addition, we compare the
results of the MICA algorithm with those obtained by the original
ICA and ES algorithms. Experiments are performed on TEST 1 and
TEST 2 instances under two scenarios of the MS and RS games.
The results are summarized in Tables 2 and 3. All algorithms have
been implemented in MATLAB 7.6.0 and tested on a Core 2 Duo
2.26 GHz processor with 2 GB of main memory. For optimization
GAP(%) Time (s)

S MICA-ICA MICA-ES MICA ICA ES

15.3 0 0 44 11 149
070.6 0 0 87 35 231
231.7 0 0 127 56 316
938.3 0.146 0.093 170 73 402
478.7 0.389 0.282 219 91 471
708.2 0.438 0.321 274 115 548
014.6 0.564 0.312 317 131 619
204.6 1.13 0.474 365 169 705
558.3 1.037 0.455 403 181 784
821.6 1.291 0.594 438 205 831

07.7 0 0 39 9 137
84.5 0 0 82 31 225
27.5 0 0 135 59 318
99.3 0.200 0.167 184 77 412
328.9 0.445 0.346 211 87 469
475.8 0.323 0.217 266 109 541
631.3 0.955 0.564 311 135 610
752.8 1.395 0.713 353 162 696
968.0 1.273 0.584 395 176 773
183.2 1.436 0.627 432 201 826

ios for test problems.

Manufacturer’s benefit

ackelberg Retailer Stackelberg Manufacturer Stackelberg

682.4 915.3
802.0 1070.6
904.1 1231.7
1414.2 1940.1
1504.1 2485.7
1685.9 2716.9
1709.8 3024.0
1932.5 3219.8
1964.5 3574.5
2168.4 3844.3

205.4 207.7
251.1 284.5
587.2 627.5
726.2 900.8
1076.5 1333.5
1147.3 1479.0
1214.4 1640.5
1479.8 1765.3
1512.6 1979.5
1766.2 2196.9



Fig. 6. Manufacturer’s benefit comparisons for TEST 1.
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Fig. 7. Manufacturer’s benefit comparisons for TEST 2.
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of the lower-lever (follower) problem in each generation of the
solution algorithms, we used the GAMS 29.9.2 software interface.

Experimental results indicate that the proposed MICA algorithm
exceeds not only the original ICA but also the grid search and ES
algorithm in finding the optimal (or near-optimal) equilibrium
solutions of the MS and RS games. Concerning computational time,
ICA is the most efficient algorithm. However, the proposed MICA
algorithm requires a reasonable amount of time and computational
efforts such that in the largest instances it takes 600 s which is sig-
nificantly lower than the amount of time needed by ES algorithm.

Since the benefit value is the most important performance mea-
sure in supply chains, we compare the optimal benefit values of the
manufacturer and the retailer under two Stackelberg scenarios in
Table 4.
Results are displayed in Figs. 6–9. As it is illustrated, each chan-
nel member gains more benefit when playing the Stackelberg lea-
der at the expense of the other channel member who becomes the
follower. Finally, it can be concluded that the market power of each
member which specifies its decision behavior in the supply chain.

6. Concluding remarks

This paper has studied a multi-product manufacturer–retailer
supply chain where the demand jointly depends on price and
advertising expenditure. A Stackelberg game framework has devel-
oped under two power scenarios. The MS game scenario wherein
the manufacturer has the leading power of the chain, and the RS
game scenario which allows the retailer to acts as the dominant
member in the chain. We have formulated models using bi-level
optimization approach to find the optimal equilibrium wholesale
and retail prices as well as advertising expenditures and produc-
tion policies.

Several solution procedures including an ICA and ES methods
have been designed to solve Stackelberg games. We proposed a
modified version of ICA (MICA) applying some additional mecha-
nisms including a modified assimilation strategy along with a
diversification approach, and an adaptive mechanism, to improve
the performance of the algorithm. Numerical experiments were
carried out for validation and evaluation purposes. Comparing
the results with a good lower bound obtained from an exhaustive
grid search indicates that all the proposed solution algorithms are
able to find high quality solutions in a reasonable amount of time
while the MICA exceeds other algorithms in achieving the optimal
equilibrium solutions.
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