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Of late, attempts are being made to optimise production system problems by minimum cost. A good available
device in this area is response surface methodology. This methodology combines experimental designs and
statistical techniques for empirical model building and optimising. In most situations simulated models for
real world problems are non-linear multi-response, while responses are conflicting. The simultaneous
optimisation of several conflicting responses is computationally expensive. So this makes the problem solving
extremely complex. Since few attempts have been made to scrutinise this domain, in this paper the nonlinear
continuous multi-response problem is investigated. In order to tackle multi-response optimisation difficulties,
we propose a new hybrid meta heuristic based on the imperialist competitive algorithm. It simulates a socio–
economical procedure, imperialistic competition. When there are some non-dominated solutions in searching
space, a technique for order performance by similarity to ideal solution is used to identify which non-
dominated solutions are imperialists and which ones belong to colonial societies. A particle swarm-like
mechanism is employed to model the influence of imperialists on colonies. The algorithm will continue until
only one imperialist obtains all countries’ possessions. In order to prevent carrying out extensive experiments
to find optimum parameters of the algorithm, we apply the Taguchi approach. Since there is no standard
benchmark in this field, we use three case studies from distinguished papers in the multi-response optimisation
field. Comparing the results with some works mentioned in the literature reveals the superiority of the
proposed algorithm.

Keywords: multi–response problem; imperialist competitive algorithm; MCDM; TOPSIS

1. Introduction

Nowadays there are varying products in markets and consumers lean towards those of better quality, with better
after-sales service and of lesser price. Growing competition in markets forces manufacturers to improve the
performance of their systems continuously. To augment sales and benefits, they have to enhance the quality of the
products without increasing the cost.

One of the most important stages in a system’s cost saving is simulating the manufacturing processes by
mathematical relationships and optimising the model. This is named offline quality control. It can lead to
minimising process variations, failure rates, reworks, scraps and the need for inspection and consequently increases
the efficiency of the process, quality of end products and customer service level. Response surface methodology
(RSM) is a common tool in this area that has been used in the last decades. In fact RSM is an incorporation of
statistical and mathematical techniques, which is used to design and model the cause-and-effect relationship between
process inputs (called effective variables or factors) and outputs (called responses).

There are two different significant groups of factors affecting the production process: controllable and
uncontrollable. Uncontrollable factors, as the name suggests, can’t be controlled within the production
environment, though some of them may become under control during experimental conditions (see Figure 1).
As mentioned above, RSM can generate a mathematical relationship between controllable input factors as
independent input variables and the output of a process as dependent variables (or response variables).

Thus, if we succeed in justifying controllable factors we can increase the expected value of the product quality.
So, it is interesting to find the impact of the effective controllable input factors, alone or in combination, in the
processes.
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Normally, most of the real world engineering problems have several responses (or objectives). The simultaneous

optimisation of several conflicting responses in order to find the solution(s) of a problem is known as a multi-

response optimisation problem which can be computationally expensive and often makes the problem solving

extremely complex.
Traditionally, there are several methods available in the literature for solving and optimising multi-response

optimisation problems (MROPs) like goal attainment (Xu et al. 2004), goal programming (Clayton et al. 1982), the

weighting method (Ilhan et al. 1992), the e-constraint method (Coello Coello 2000), and so on. But, none of these

methods consider all the responses simultaneously, which is a basic requirement in most MROPs.
Comprehensive investigations have been carried out through different traditional techniques and are presented

briefly below. For example, Myers and Carter (1973) used the bounded objectives method for the first time. Biles

(1973) extended this method for more than two solutions. Myers et al. (1973) improved upon these results by

combining them with the method of Myers and Carter. They used deviation and response effects as two independent

solutions in their method. The decision function was proposed for the first time by Derringer and Suich (1980). The

basic idea in this method was transforming multi-objective functions into a single objective. They converted each

response function into a desirability function and maximised the geometric mean of the desirability of each response

by using a single-objective optimisation technique. Zimmermann (1978) offered a method for solving multi-objective

linear programming problems using fuzzy logic. Later Cheng et al. (2002) extended Zimmermann’s method for

optimising statistical multi-response problems but the solution’s length was the weakness of their method.
Although RSM is a modelling tool, it is an optimisation technique too. But it is not applicable in complicated

cases such as non-polynomials, higher-orders and multi-modal functions (Pasandideh and Niaki 2006). Recently,

evolutionary algorithms (EAs) have been found to be appropriate for solving MROPs because they have some

superiority to traditional techniques. For example, contrary to mathematical techniques, some special character-

istics of functions like convexity, concavity, continuity and so on are not important in EAs. Thus, growing attention

has been considered on utilising EAs for these problems in the last decade. For example, Correia et al. (2005) offered

a comparison between RSM and genetic algorithm (GA) in the optimisation of welding processes. Suresh et al.

(2002) presented a second level model for the expected roughness degree of steel parts. Their study tries to optimise

the roughness degree of the parts by GA. Oktem et al. (2005) offered a GA method using RSM in which RSM

presents an effective model to determine the level of parameters and GA optimises these levels. Fan et al. (2004)

integrated the Nelder-Mead simplex search method with genetic algorithm and particle swarm optimisation (PSO)

to locate the global optimum solutions for the nonlinear functions with continuous variable, mainly focusing on

RSM. Ozcelik and Erzurumlu (2005) offered a model for warpage applying RSM. They developed a genetic

algorithm for minimising the warpage on thin-shell plastic parts.
Pasandideh and Niaki (2006) modelled statistical multi-response optimisation problems using the desirability

function approach and also proposed a GA with four different chromosome-selection strategies to solve it.

Fourman (1985) suggested a GA-based method for the lexicographic ordering problem. In his approach, the

decision maker ranks the objectives with respect to their importance. Then the optimum solution is obtained by

optimising the objective function starting from the most important.
Kim et al. (2002) proposed a method based on the desirability function and GA to optimise a welding process.

Khoo and Chen (2001) combined GA with RSM and also presented a GA in three different scenarios which can deal

with single-response, multi-response and multi-constraint problems.

Controllable factors 

1x 2x nx

Uncontrollable factors 
1z 2z nz

Raw material 
Operators 
Machine 
Etc. 

Inputs
Output

Process y

Figure 1. Production environment.
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Analysing several qualitative attributes simultaneously, Koksoy and Yalcinoz (2006) used RSM and compared
its results with those of the GA. A technique for solving multi-response problems in surface applications was
presented by Ortiz et al. (2004). The technique combined an unconstrained desirability function with a genetic
algorithm. Also it is capable of distinguishing between far from feasible and nearly feasible solutions. Fallah-
Jamshidi et al. (2010) presented a novel two-phase hybrid genetic-based metaheuristic for nonlinear continuous
multi-response problems.

EAs are inspired by events of nature and try to mimic the evolutionary process. An evolutionary algorithm keeps
one or more populations of solutions for a given problem, and tries to improve upon these solutions by imitating
evolutionary procedures. For example, a genetic algorithm is inspired by the biological principles of evolution; ant
colony optimisation is inspired by the foraging behaviour of real ants; simulated annealing is inspired by an analogy
to physical annealing in materials; and PSO is based on social interactions and communications such as birds
flocking and fish schooling.

In contrast to the afore-mentioned algorithms that emulate natural behaviours and the biological evolution of
humans or other living beings, recently a new EA has been proposed by Atashpaz-Gargari and Lucas (2008). This
algorithm uses the socio–political evolution of humans as a source of inspiration for developing a powerful
optimisation strategy. This method is named the imperialist competitive algorithm (ICA). By now ICA has been
applied for single-objective problems. In our paper, we mainly introduce an adapted multi-objective ICA based on
multi-criteria decision making (MCDM) theory, and utilise this algorithm to solve multi–response optimisation
problems.

The rest of the paper is organised as follows. Section 2 describes the problem definition. In Section 3, the
proposed algorithm is depicted. Computational experiments are explained in Section 4. In Section 5, experimental
results are presented. Finally, Section 6 concludes the paper and introduces trends for future research.

2. Problem definition

Real world production system problems tackle several different responses. Events take place stochastically and
various factors (independent input variables) affect multiple responses coincidentally. Therefore, the purpose of this
research is to ascertain factor levels that in some senses optimise all responses or at least keep them in desired ranges.

In order to attain this goal, the first step is to estimate an appropriate response surface model for each of the
responses (objectives) through computer simulation. The estimation is necessary because the mathematical
relationship between controllable factors as independent input variables and outputs of processes as response
variables is generally unknown. In this situation, independent input variables are denoted by ~x ¼ ðx1, x2, . . . , xnÞ and
the kth response is shown by fkð~xÞ. The second step is generating and exploiting an efficient approach to optimise
multi-response models given by the previous step simultaneously. So we are interested in adjusting levels of
independent input variables such as ðx�1, x

�
2, . . . , x�nÞ to solve problems with the following form:

Maximise or Minimise ~f ð~xÞ ¼ f1ð~xÞ, f2ð~xÞ, . . . , fkð~xÞ
� �

subject to: Lj � xj � Uj

where Lj and Uj are lower and upper bounds for jth independent input variable and fk : IRn ! IR, k¼ 1, . . . , nf.

3. Proposed algorithm

ICA is a new global search algorithm that simulates the socio–political process of real world imperialistic
competition.

Like other EAs, this algorithm starts with an initial population of solutions which are named countries. These
countries are divided into two categories according to their power (response functions values): imperialists and
colonies. Imperialists are some countries with higher power (more response values) in the population, and colonies
are the remaining countries (with less response values) assigned to the imperialists based on the imperialists’ power.

A set of one imperialist and its colonies is called an empire. An assimilation strategy and extending the reign of a
government beyond its territory are the bases of this algorithm. The assimilation strategy in the real world is the
attempt of an imperialist to abrogate the civilisations and cultures of its colonies and impose upon them compulsory
ones. In the proposed algorithm this strategy is simulated through a mathematical relationship.

International Journal of Production Research 3
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During transfer to an imperialist, a colony might achieve a position with a better response value than the

imperialist’s. In this case, the colony takes the imperialist position. Then, in the imperialistic competition procedure,

all empires attempt to possess colonies of other empires according to their total power. The total power of an empire

relates to both the power of the imperialist and the power of its colonies.
This competition gradually leads weak empires to fail to keep possession of their colonies and when an empire

loses all of its colonies it collapses.
Ultimately when all empires except the most powerful one have been eliminated, all of the colonies are under the

control of the same empire. This means that the algorithm has found the best solution (Karimi et al. 2011). In the

following, we describe all steps of the adapted algorithm according to our problem in detail.

3.1 Representation

In an optimisation problem, the aim is to attain an optimal solution in terms of variables of the problem. In our

mentioned problem, we consider each solution as a country.
In mathematical form, each country is a string of 1� n in which n is the number of independent variables in the

range of (Lj,Uj) and the jth number in the string denotes the coded value of the jth input variable. From a historical–

cultural point of view, the variables are countries’ cultures, languages, economical rules and so forth (see Figure 2).

3.2 Initial population

A set of countries called initial population is vital for the algorithm to start. The size of the initial population would

be given for the algorithm. Since the initial population has a significant effect on the performance of the algorithm

and its speed in reaching to the final solutions, we applied a simulation approach to produce countries. The

following notation has been used to generate the initial values of each independent variable:

xij jth input variable of ith country; i¼ 1, . . . ,m; j¼ 1, . . . , n
Lij lower limit for jth input variable of ith country
Uij upper limit for jth input variable of ith country
� random number between 0 and 1
m population size

xij ¼ Uij � ðUij � LijÞ � �

If � has a value of 0, it means the relevant variable is in its upper bound and if it has a value of 1, the relevant

variable is in its lower bound.

3.3 Evaluation of authority

All countries should be evaluated through response functions. The evaluation allocates a value according to each

response function to each country which discriminates against them. Assuming a minimisation problem, solutions

which have lower values are better.

nx…3x2x1x

nnn UxL ≤≤…333 UxL ≤≤222 UxL ≤≤111 UxL ≤≤

Figure 2. Representation of a country.
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3.4 Generation of initial empires

Here a specific number of best countries (Nimp) with regards to response function values are picked out to be the

imperialist states. All the remaining countries constitute colonies (Ncol) that are divided among these imperialists

based on the total power of the imperialists.
In multi-response problems, usually there are non-dominated solutions in the searching space. For better

interpretation, consider the following two definitions in a minimising problem:

(I) Dominant solution: A vector ~a ¼ ða1, a2, . . . , anÞ dominates ~b ¼ ðb1, b2, . . . , bnÞ if and only if ~a is partially

less than ~b, for example:

8j 2 1, 2, . . . , nf g, aj � bj ^ 3 j 2 1, 2, . . . , nf g, aj 5 bj:

(II) Non-dominated solution: A vector of decision variables ~a 2 A � IRn is non-dominated with respect to A if

it is not dominated by any other solutions, that is to say there is not any ~a0 2 A that ~f ð~a0Þ5 ~f ð~aÞ (Zandieh
and Karimi 2010).

Since non-dominated solutions in the searching space might be more than Nimp, we need a method to discriminate

against them. In other words, we want to clarify which ones among these non-dominated solutions should be

considered as emperors and which ones as colonies. So we face a decision-making problem.
A decision-making problem is the process of finding the best choice from all feasible alternatives. Often

multiplicity of criteria for judging in such problems is pervasive. In other words for many such problems, the

decision maker wants to solve a MCDM problem.

3.4.1 TOPSIS

The technique for order performance by similarity to ideal solution (TOPSIS) is a well-known classical MCDM

method with cardinal information, a ratio scale, on the criteria/attributes that was initiated by Hwang and Yoon

(1981). This technique is based on the concept by which the chosen alternatives should have the shortest distance

from the positive ideal solution (the best solution) and the farthest from the negative ideal solution (the worst

solution). A TOPSIS solution is defined as the alternative which is simultaneously farthest from the negative ideal

and closest to the ideal alternative.
According to the simulation comparison of Zanakis et al. (1998), TOPSIS has the fewest rank reversals among

the eight methods of MCDM. Thus, TOPSIS has been chosen as the target technique for our selection problem. This

method generally consists of the following steps:

Step 1: Obtain a decision matrix, where a set of possible alternatives (x1, x2, . . . , xm) is compared to a set of

criterion functions (objective functions) (y1, y2, . . . , ym). An element aij of the matrix is a value indicating the

performance rating of alternative xi with regard to the criterion yj, wj is the weight of criterion yj.

y1 y2 � � � yn

M ¼

x1

x2

..

.

xm

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

am1 am2 � � � amn

2
66664

3
77775

W0 ¼ w1 w2 � � � wn

� �
Xn
j¼1

wj ¼ 1

Step 2: Convert raw values aij to normalised values nrij as:

nrij ¼
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 a

2
ij

q j ¼ 1, 2, . . . , n
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Step 3: Calculate the weighted normalised values of decision matrix as:

W ¼ wj � nrij

where wj is the weight of the jth criterion set by the decision maker (DM)

Step 4: Identify the positive (Aþ) and the negative (A–) ideal solution.

Wþ1 ,W
þ
2 , . . . ,Wþn

� �
¼
��
max

i
Wijj j 2 J

�
&
�
min

i
Wijj j 2 J0

�
ji ¼ 1, 2, . . . ,m

�
W�1 ,W

�
2 , . . . ,W�n

� �
¼
��
min

i
Wijj j 2 J

�
&
�
max

i
Wijj j 2 J0

�
ji ¼ 1, 2, . . . ,m

�
Where J¼ 1, 2, . . . , n is a set of indexes of benefit criteria and J0 ¼ 1, 2, . . . , n is a set of indexes of cost criteria.

Step 5: Calculate the Euclidean distances for each solution from the positive and the negative ideal solutions.

dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Wij �Wþj

	 
2vuut i ¼ 1, 2, . . . ,m

d�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Wij �W�j

	 
2vuut i ¼ 1, 2, . . . ,m

dþi is the distance of ith alternative from the positive ideal solution
d�i is the distance of ith alternative from the negative ideal solution

Step 6: Calculate relative closeness to ideal solution for each solution.

cli ¼
dþi

dþi þ d�i
0 � cli � 1

Step 7: Sort the solutions in terms of similarity cli, from the most to the least similar. The solution the least close
has best rank.

Finally, after Step 7, a number of countries that have the best ranking with regard to the predetermined number
of empires are selected. Each imperialist, depending upon its power, has authority over a number of countries. To
estimate the number of colonies that belong to each imperialist, firstly the relative power of each imperialist should
be calculated as follows:

pi ¼
cliPNimp

i¼1 cli

$ %

As mentioned earlier, cli is the relative closeness to the ideal solution for each solution. Now the number of colonies
of each imperialist can be calculated as follows:

NCi ¼ round pi �Ncol

� �
The initial number of colonies of the ith empire is NCi, which are selected randomly. Ncol is the total number of

colonies (that is to say the difference between the number of solutions and the number of predetermined
imperialists).

Thus each imperialist together with its NCi number of colonies creates an empire (Karimi et al. 2011).

3.5 Assimilation strategy: movement of colonies toward the imperialist

As mentioned previously, imperialists try to influence their colonies in different socio–political aspects.
Although each imperialist attempts to absorb its colonies and make them a part of it, colonies may resist
these changes and make some deviations. These deviations may be caused by the effect of other empires’
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assimilation strategies. In order to model this strategy, we adapt a PSO-like mechanism proposed by Fallah-
Jamshidi et al. (2010).

This method simulates social interaction and communication such as birds flocking and fish schooling to
improve colonies towards the optimum, which is the significant feature of this algorithm. This approach is
implemented on colonies of each empire, so the movement is in the direction of the imperialist but it is not a direct
movement because of the attraction–repulsion of the best imperialist.

Each colony adjusts its movement through the searching space by combining some aspect of its own and
experiences of other imperialists with some random perturbations. The following is the mathematical representation
of these concepts.

Vid ¼
’1 � pid � xid½ � þ ’2 � pgd � xid

� �� �
�

where:

Vid movement length of ith country in dth variable
� constriction factor
’1 cognitive power
pid current status of imperialist of ith colony in dth variable
xid current status of ith colony in dth variable
’2 social power
pgd current status of the best one among other imperialists in dth variable

3.5.1 Constriction factor

This factor is provided to avoid exploding and growing out of the bounds of movement length. It
prevents producing infeasible solutions. We use a dynamic stochastic approach to set a constriction coefficient as
follows:

� ¼

�max þ
�max � �min

MI
� CI if rand ð0, 1Þ 	 0:5

�

�
�max þ

�max � �min

MI
� CI

�
if rand ð0, 1Þ5 0:5

8>><
>>:

where:

�max : max pid � xid½ �, pgd � xid
� �� �

�min : min pid � xid½ �, pgd � xid
� �� �

MI maximum iteration
CI current iteration

3.5.2 Acceleration coefficients

’1 and ’2 determine the impressibility degree of power by imperialist of corresponding colonies and the power of
other imperialists, respectively. When ’1 is greater than ’2, the colony tends towards its imperialist rather than other
imperialists, and if ’1 is smaller than ’2, the colony trusts in imperialists other than its own. We applied the
following heuristic technique to define acceleration factors:

’2 ¼ 1� ð�ÞCI

’1 ¼ 1� ’2

where � is a constant number in the range of (0, 1) and here we assume its value equal to 0.9.

International Journal of Production Research 7
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3.5.3 Next position

The position of the ith colony in the dth variable is now changed by adding calculated movement length to the
current position as follows:

Xid ¼ xid þ Vid

3.6 Exchanging positions of imperialist and colony

In the movement toward the imperialist, a colony may get to a position with a better response value than its
imperialist. In other words, the colony becomes so powerful that it can leave imperialism. In such a case, the colony
takes the position of its imperialist and the imperialist transmutes into a colony (Karimi et al. 2011). The algorithm
will continue by the new imperialist in a new position and then colonies start trying to seize this position. Figure 3(a)
and Figure 3(b) depict the position exchange between a colony and the imperialist.

3.7 Imperialistic competition

As mentioned earlier, imperialism is the policy of extending the power and reign of a government beyond its own
territories. In the imperialistic competition, imperialist states compete strongly to increase the number of their
colonies and extend their empires by possessing more colonies from weaker empires.

Power or weakness of an empire is defined according to its total power. The total power of an empire depends on
both the power of the imperialist and the power of its colonies. Based on total power, each empire has the
probability of taking possession of the weakest colony of the weakest empire. In other words this colony will not be
possessed by the most powerful empire, but this empire has more probability of possessing the mentioned colony.

The imperialistic competition is modelled by the transfer of the weakest colony of the weakest empire. This
competition gradually culminates to a development in the power of a great empire and a decrease in the power of
weaker ones. An empire will collapse if not able to succeed in imperialistic competition and so will lose all of its
colonies. The total power of an empire is defined as follows:

TPi ¼ cli imperialisti
� �

þ "�mean cliðcolonies of empireiÞ
� �

where TPi is the total power of the ith empire and " is a positive number between (0, 1) and near to 0. An increase in
the value of " will result in a more significant role for colonies in determining the total power of an empire. Now we
can calculate the probability of possession of empires (Karimi et al. 2011); see Figure 4.

Pi ¼
TCiPNimp

i¼1 TCi

$ %

These values are shown in a vector to divide colonies among empires:

P ¼ P1,P2,P3, . . . ,PNimp

� �

(a)

Imperialist

Best colony

(b)

Best colony

Imperialist

Figure 3. (a) Exchanging the positions of a colony and an imperialist. (b) New empire after position exchange.
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To assign the weakest colony of the weakest empire, we need another vector with the same size that is generated
by uniformly distributed random numbers, U(0, 1).

R ¼ r1, r2, r3 . . . , rNimp

� �
Now simply by subtracting R from P, the biggest value of vector D indicates which empire can possesses the

weakest colony.

D ¼ P� R½ � ¼ P1 � r1,P2 � r2,P3 � r3, . . . ,PNimp
� rNimp

� �

3.8 Eliminating the powerless empires

In the proposed algorithm, all empires fight for perpetuity by possessing more colonies from each other.
As the algorithm proceeds, any empire that is not able to increase its colonies or at least avoid decreasing its

colonies will be very weak. Such empires have little chance of surviving. Each empire that loses all of its colonies will
be eliminated (Karimi et al. 2011).

3.9 Stopping criteria

The algorithm stops when one or all of its stopping criteria are met. Here we consider the algorithm stops and the
imperialistic competition terminates when only one empire remains. In this case, all the empires except the most
powerful one are eliminated and all the colonies come under the authority of the last empire (Karimi et al. 2011).

4. Computational experiments

4.1 Taguchi experimental design

There are always several parameters that have remarkable influence on the performance of a metaheuristic
algorithm. Parameter tuning is so important because different values of the effective parameters leads to
different solutions. It is also difficult due to multimodality and nonlinearity of different kinds of response functions,
especially in large-sized problems. These parameters are adjustable through trial and error or utilising different
statistical parameter setting approaches like full factorial experiment. This is a comprehensive and the most widely
used approach but loses its competence increasingly when the number of parameters is significantly high
(Montgomery 2000).

Another technique to calibrate the algorithm is the Taguchi method, which reduces the number of experiments
noticeably but gives sufficient information.

In the Taguchi approach, parameters are divided into two main groups: controllable and noise (uncontrollable)
factors. Noise factors are those over which there is no direct control.

Empire 1: The weakest empire 

Empire 2 

Empire 3 

Empire N 

NP 3P

2P

Figure 4. Imperialistic competition – Possession of the weakest colony of the weakest empire based on probability of possession.
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We use the Taguchi method to find the optimal level of effective controllable factors while trying to minimise the

effect of noise factors.
There are two major tools in this approach: the orthogonal array (OA) and the signal-to-noise (S/N) ratio.

Terms ‘‘signal’’ and ‘‘noise’’ denote the mean response variable (desirable values) and the standard deviation

(undesirable values), respectively.
An orthogonal array is a fractional factorial matrix that utilises scrutinising a large number of decision variables

by a small number of experiments, and the S/N ratio facilitates specifying the amount of variation in the response

variable. According to this method, controllable factors are located in the inner orthogonal array and noise factors

are situated in the outer orthogonal array. The measured values that are obtained through the experiments will be

transformed into an S/N ratio.
In the Taguchi approach, depending on the type of characteristics (continuous or discrete), S/N ratios are

classified into three groups: nominal-is-the-best, smaller-the-better and larger-the-better. A detailed description can

be found in Ross (1989) and Taguchi et al. (2000). Based on our problem features, we apply the smaller-the-better:

S=N ratio ¼ �10 log10 objective functionð Þ
2

4.2 Parameter tuning

Controllable factors of our algorithm are: population size, number of empires and the value of " for calculating total
cost. Factors with their levels are shown in Table 1. The fittest design for this algorithm is L9 (33) as shown in

Table 2.
We implemented these experiments in MATLAB 7.0.4 and ran them on a PC with 2.33GHz Intel Core 2 Duo

and 2 GB of RAM memory.

4.3 Evaluation metric

The conflicting nature of MROP solutions make us use some performance measures to ensure a better assessment of

the proposed algorithm. Therefore we take three performance metrics into consideration. To start, we have to

normalise responses, because they generally have different measurement units. Normalisation is accomplished for

each response as follows:

Nfk ¼
fk

max fkð Þ
in a maximisation problem

Nfk ¼
max fkð Þ � fk

max fkð Þ �min fkð Þ
in a minimisation problem

where fk and Nfk are the kth response function and the normalised value of the kth response function, respectively.

Table 2. The orthogonal array L9.

Experiment A B C

1 �1 �1 �1
2 �1 0 0
3 �1 1 1
4 0 �1 0
5 0 0 1
6 0 1 �1
7 1 �1 1
8 1 0 �1
9 1 1 0

Table 1. Factors and their levels.

Controllable
factors

Population
size

Number
of empires "

Symbol A B C
Level 1 50 5 0.1
Level 2 150 10 0.2
Level 3 300 15 0.4
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4.3.1 Ideal distance (ID)

This metric estimates distance between solutions and best reference point (0, 0). The equation of ID for the ith

solution is defined as following:

IDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnf
k¼1

Nf 2ik

vuut :

where Nfik is a normalised value of the kth response function of the ith obtained solution. The lower the value of

MID in a minimising problem, the better solution quality we have.

4.3.2 Improvement (IMP)

We evaluate the proposed algorithm by relative improvement with respect to the mentioned methods (Karimi et al.

2010). For a minimising problem, this metric can be calculated as below:

improvement ¼

Pnf
k¼1

fk MAð Þ�fk PAð Þ

fk MAð Þ

nf
� 100

Here fk(MA) and fk(PA) are the kth response value obtained through the mentioned algorithm and the proposed

algorithm, respectively, and nf is the number of responses.

4.3.3 Relative closeness to ideal solution for each solution (cli)

This measure is used to sort the solutions in terms of similarity based on cli, from the most similar to the least. The

least close solution is best.

5. Experimental results

In this section we try to evaluate the efficiency and effectiveness of the proposed algorithm. Since there is not any

reliable benchmark in this field we do the assessment utilising three different case studies from three published

papers. We apply our proposed algorithm on their RSM-based models and compare the obtained results to check

the performance of the algorithm. In the following we present a brief description of each case study and then do the

comparisons.

Case study 1: In this example, we like to test the proposed algorithm against a nonlinear multi-response model.

Rahman et al. (2007) studied the effect of H2SO4 concentration, reaction temperature and reaction time for the

production of xylose. They used a rotatable central composite design (CCD) in order to fit a second order model,

and RSM was utilised to optimise the hydrolysis process in order to obtain high xylose yield. The model is as follow:

Y1 ¼ 86:94þ 2:41x1 þ 3:83x2 þ 6:99x3 � 19:15x21 � 7:09x22 � 12:47x23 � 11:15x1x2

� 22:08x1x3 � 1:15x2x3

Y2 ¼ 16:38� 3:55x1 � 4:05x2 þ 0:35x3 � 4:4x21 þ 2:53x22 � 2:34x23 � 0:17x1x2

� 5:31x1x3 � 0:51x2x3

where Y1 stands for xylose yield and Y2 selectivity, x1 temperature, x2 reaction time and x3 acid concentration. See

Rahman et al. (2007) for more details.
As can clearly be seen from Table 3, the proposed method outperforms the mentioned algorithms in all of the

performance metrics. Note that in a maximisation problem, bigger ID is better. This result can also be seen from

Figure 5(a) and Figure 5(b).

Case study 2: This case study that strives to optimise the bi-response optimisation problem was considered

by Kuar et al. (2006). They fitted models for minimising HAZ and taper condition during pulsed Nd:YAG laser

International Journal of Production Research 11
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micro-drilling on ZrO2 using a central composite rotatable second-order design. These models are as follows:

Y1 ¼ 0:3796þ 0:07888x1 � 0:0412x2 � 0:04301x3 � 0:0057x4 þ 0:02146x21 � 0:00957x22 þ 0:00266x23

� 0:01234x24 � 0:02228x1x2 � 0:00679x1x3 � 0:03158x1x4 þ 0:01341x2x3 � 0:00983x2x4 � 0:00497x3x4

Y2 ¼ 0:07253þ 0:00912x1 þ 0:00887x2 � 0:00606x3 þ 0:00449x4 þ 0:00153x21 þ 0:00225x22 þ 0:00233x23

þ 0:00399x24 þ 0:00431x1x2 � 0:00646x1x3 � 0:00519x1x4 � 0:0011x2x3 � 0:00023x2x4 � 0:07253x3x4

where Y1 represents thickness of HAZ, Y2 taper of the machined hole, x1 lamp current, x2 pulse frequency – that is

to say frequency of Q-switch – x3 air pressure and x4 pulse width. See more details in Kuar et al. (2006).
Table 4 and Figure 6 also show that the proposed algorithm attained the best results.

Case study 3: In the current investigation, which is considered by Onwubolu (2006), there are three variables, x1, x2
and x3. The following independent controllable process parameters were identified to carry out the experiments: drill

speed (x1), drill feed rate (x2) and drill bit diameter (x3). Trial runs were carried out by varying one of the process

parameters whilst keeping the rest of them at constant values. The aim was to minimise two responses (axial force,

Figure 5. (a) Response function values of case study 1. (b) Magnification of mentioned area.

Table 3. Comparison of four algorithms through three different metrics on case study 1.

Methods X1 X2 X3 Y1 Y2 ID Imp. Cli

Pasandideh and Niaki �0.4583 �0.7775 0.5074 76.5009 22.7116 0.6846 1.863% 0.7647
S. Fan et al. �0.2692 �0.9870 0.5217 75.1996 23.9877 0.6974 0.067% 0.3405
Fallah-Jamshidi et al. 0 �1 0.3 77.3397 23.0074 0.6928 0.689% 0.5758
Proposed method �0.236 �1 0.5015 75.3122 23.9840 0.6978 0.3291

Table 4. Comparison of four algorithms through three different metrics on case study 2.

Methods x1 x2 x3 x4 Y1 Y1 ID Imp. cli

Pasandideh and Niaki �1.9886 �0.3295 �1.9920 �1.9910 0.1949 �0.2459 0.5000 39.061% 0.6707
S. Fan et al. �1.8946 0.9943 �1.9892 �1.9892 0.1860 �0.2365 0.4776 36.438% 0.6785
Fallah-Jamshidi et al. �2 2 �2 �2 0.1471 �0.2331 0.3783 29.043% 0.4549
Proposed method 1.0415 2 2 2 0.0963 �0.1782 0.2828 0.3293
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P, and torque, T). The mathematical relationships for correlating responses and the considered process variable

areas follow. For more details see Onwubolu (2006).

Y Pð Þ ¼ 51:6045� 6:7395x1 þ 9:0524x2 þ 11:9810x3 þ 2:4695x21 þ 1:5858x22 � 0:1815x23
� 1:25x1x2 þ 3:75x1x3 � 1:2x2x3

YðTÞ ¼ 1:2258þ 0:0124x1 � 0:0364x2 � 0:0478x3 � 0:1785x21 � 0:1785x22 � 0:1919x23
� 0:0908x1x2 þ 0:0317x1x3 þ 0:1542x2x3

Figure 6. Response function values of case study 2.

Figure 7. Response function values of case study 3.

Table 5. Comparison of four algorithms through three different metrics on case study 3.

Methods x1 x2 x3 Y1 Y2 ID Imp. cli

Pasandideh and Niaki 0.9909 0.5138 �0.9792 36.8443 0.7053 0.6649 12.92% 0.7662
S. Fan et al. 0.9632 0.6179 �0.9416 38.7132 0.6839 0.6687 14.74% 0.8167
Fallah-Jamshidi et al. 0.9974 0.4975 �0.9896 36.4708 0.7056 0.6621 12.35% 0.7536
Proposed method 1 1 �1 42.0102 0.4241 0.5834 0.2464
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6. Conclusion and future work

In order to tackle multi-response optimisation difficulties, we proposed a new hybrid multi-objective ICA to

investigate the nonlinear continuous multi-response problems. A simulation approach was used to generate diverse

initial solutions. A PSO-like mechanism was introduced to simulate imperialists’ assimilation strategy. If there are

multiple non-dominated solutions, a well-known classical MCDM method (that is to say TOPSIS) would be used to

identify which ones are imperialists and which ones belong to the colonies’ society.
To validate the effectiveness of the proposed multi-objective ICA, we have considered three distinguished case

studies from published papers and have evaluated the performance and the reliability of the proposed algorithm in

comparison with mentioned works in the literature. Different comparison metrics, such as the rate of achievement to

two responses simultaneously, mean ideal distance, improvement and relative closeness to ideal solution, were

applied to appraise the efficiency of the proposed algorithm. As evidenced from the illustrations, the proposed

algorithm considers more expanded ranges of searching space than other existing algorithms. The experimental

results reveal that the proposed hybrid multi-objective ICA outperformed other methods. In all case studies, the

multi-objective ICA was able to improve the quality of the obtained solutions.
Future research directions involve the consideration of other meta heuristics for this problem and other methods

for data generation instead of simulation.
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