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Colonial competitive algorithm
A novel approach for PID controller design

in MIMO distillation column process

Esmaeil Atashpaz Gargari, Farzad Hashemzadeh,
Ramin Rajabioun and Caro Lucas

School of Electrical and Computer Engineering,
Control and Intelligent Processing Centre of Excellence, University of Tehran,

Tehran, Iran

Abstract

Purpose – This paper aims to describe colonial competitive algorithm (CCA), a novel socio-politically
inspired optimization strategy, and how it is used to solve real world engineering problems by
applying it to the problem of designing a multivariable proportional-integral-derivative (PID)
controller. Unlike other evolutionary optimization algorithms, CCA is inspired from a socio-political
process – the competition among imperialists and colonies. In this paper, CCA is used to tune the
parameters of a multivariable PID controller for a typical distillation column process.

Design/methodology/approach – The controller design objective was to tune the PID controller
parameters so that the integral of absolute errors, overshoots and undershoots be minimized. This
multi-objective optimization problem is converted to a mono-objective one by adding up all the
objective functions in which the absolute integral of errors is emphasized to be reduced as long as the
overshoots and undershoots remain acceptable.

Findings – Simulation results show that the controller tuning approach, proposed in this paper, can
be easily and successfully applied to the problem of designing MIMO controller for control processes.
As a result not only was the controlled process able to significantly reduce the coupling effect, but also
the response speed was significantly increased. Also a genetic algorithm (GA) and an analytical
method are used to design the controller parameters and are compared with CCA. The results showed
that CCA had a higher convergence rate than GA, reaching to a better solution.

Originality/value – The proposed PID controller tuning approach is interesting for the design of
controllers for industrial and chemical processes, e.g. MIMO evaporator plant. Also the proposed
evolutionary algorithm, CCA, can be used in diverse areas of optimization problems including, industrial
planning, resource allocation, scheduling, decision making, pattern recognition and machine learning.

Keywords Optimization techniques, Programming and algorithm theory

Paper type Research paper

1. Introduction
This paper describes a novel socio-politically inspired evolutionary optimization
algorithm, colonial competitive algorithm (CCA). Unlike the current evolutionary
algorithms, such as genetic algorithm (GA) and simulated annealing (SA), that are
computer simulation of natural processes such as natural evolution and annealing
process in materials, CCA uses imperialism and imperialistic competition, socio-political
evolution processes, as source of inspiration.

Similar to the other evolutionary algorithms that start with an initial population, CCA
begins with initial empires. Any individual of an empire is called a country. There are
two types of countries; colony and imperialist state that collectively form empires.
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Imperialistic competitions among these empires form the basis of the CCA. During this
competition, weak empires collapse and powerful ones take possession of their colonies.
Imperialistic competitions converge to a state in which there exists only one empire and
its colonies are in the same position and have the same cost as the imperialist.

In this paper, we apply CCA to the real world engineering problem of designing a
multivariable proportional-integral-derivative (PID) controller for a typical distillation
column process. Although many advanced methodologies have been successfully
developed in control engineering, PID controller has remained the most popular control
loop feedback mechanism since 1950s, and has been extensively used in controlling
industrial processes, especially where rapid transitional responses are not the most
important design concept. In addition to its capabilities, PID can be implemented easily
in industrial control processes; and the existing PID controllers can easily been retuned
or upgraded. PID controller tries to correct the error between the measured outputs and
desired outputs of the process so that transient and steady state responses are
improved as much as possible. Although it is used widely, PID tuning is still an area of
research in realm of both academic and industrial control engineering and different
methods have been proposed (Bao et al., 1999; Chidambaram and Sree, 2003; Lee et al.,
2004; Wang et al., 1998). Ziegler and Nichols (1942) tuning method is the first
significant and most known one.

Compared to their SISO counterparts, MIMO processes are more complicated in
controller design. The main problem is the coupling between inputs and outputs
(Xiong et al., 2007). In last several decades, designing controllers for MIMO systems
has attracted a lot of research interests and many multivariable control approaches
have been proposed (Christen et al., 1997). Among the methods used to control MIMO
processes, PID controllers have been deployed extensively due to their less complexity,
high performance and easy implementation (Xiong et al., 2007; Garcı́a-Alvarado et al.,
2005; Halevi et al., 1997; Ruiz-López et al., 2006). Also some numerical search strategies
are proposed in the literature, to design MIMO controllers by minimizing suitable cost
functions (Chang, 2007; Hsin-Chieh et al., 2008; Su and Wong, 2007).

In this paper, CCA is applied to the problem of designing a multivariable PID
controller for a distillation column process. The design objective is to tune the PID
controller so that the integral of absolute errors, overshoots and undershoots be
minimized. The coefficients of the PID controller were obtained by two evolutionary
methods, CCA and GA. In the determination of the tradeoff coefficients in fitness
functions, we emphasized on reduction of the integral of error as long as the
overshoots/undershoots remain acceptable. The controller obtained by CCA is
compared with those of GA and decentralized rely feedback (DRF) method (Wang
et al., 1997). The simulation results showed that the evolutionary method proposed in
this paper for PID controller design has a better convergence rate than its classic
counterpart, GA, and in a certain number of function calls, it reaches to better solutions.

In the following paper, Section 2 comprehensively introduces CCA. Section 3 shows
that how CCA can be used to design a PID controller for a multivariable processes and
in Section 4, as a case study, the approach discussed in Section 3 is applied to an
industrial process, distillation column. Eventually conclusion of the paper is given in
Section 5.
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2. Colonial competitive algorithm
From a general point of view, optimization is the process of making something better
(Haupt and Haupt, 2004). Having a function f(x) in optimization, we want to find an
argument x whose relevant cost is optimum (usually minimum). Different methods
have been proposed to solve an optimization problem. Some of these methods are the
computer simulation of the natural processes. For example, GAs are a particular class
of evolutionary algorithms that evolve a population of candidate solutions to a given
problem, using operators inspired by natural genetic variation and natural selection
(Melanie, 1999). SA is another example which simulates the annealing process in which
a substance is heated above its melting temperature and then gradually cooled to
produce the crystalline lattice, which minimizes its energy probability distribution
(Haupt and Haupt, 2004). As another example, ant colony optimization is inspired by
the foraging behavior of real ants (Dorigo and Blum, 2005). Also the inspiration source
of PSO which was formulated by Edward and Kennedy in 1995 was the social behavior
of animals, such as bird flocking or fish schooling (Haupt and Haupt, 2004).

The available optimization algorithms are extensively used to solve different
optimization problems such as industrial planning, resource allocation, scheduling,
decision making, pattern recognition and machine learning. Furthermore, optimization
techniques are widely used in many fields such as chemistry, business, industry,
engineering and computer science ( Johnston and Cartwright, 2004; Darwen and Yao,
1996; Chellaboina and Ranga, 2005; Bontoux and Feillet, 2006; Varol and Bingul, 2004).

However, CCA simulates the social political process of Imperialism and imperialistic
competition. Figure 1 shows the flowchart of CCA. Similar to the other evolutionary
algorithms, this algorithm starts with an initial population. Each individual of the
population is called a country. Some of the best countries (in optimization terminology,
countries with the least cost) are selected to be the imperialist states and the rest form
the colonies of these imperialists. All the colonies of initial countries are divided among
the mentioned imperialists based on their power. The power of each country, the
counterpart of fitness value in GAs, is inversely proportional to its cost. The imperialist
states together with their colonies form some empires.

After forming initial empires, the colonies in each of them start moving toward their
relevant imperialist country. This movement is a simple model of assimilation policy
which was pursued by some of the imperialist states. The total power of an empire
depends on both the power of the imperialist country and the power of its colonies.
This fact is modeled by defining the total power of an empire as the power of
imperialist country plus a percentage of mean power of its colonies.

Then the imperialistic competition begins among all the empires. Any empire that is
not able to succeed in this competition and cannot increase its power (or at least
prevent decreasing its power) will be eliminated from the competition. The
imperialistic competition will gradually result in an increase in the power of
powerful empires and a decrease in the power of weaker ones. Weak empires will loose
their power and ultimately they will collapse. The movement of colonies toward their
relevant imperialist states along with competition among empires and also the collapse
mechanism will hopefully cause all the countries to converge to a state in which there
exist just one empire in the world and all the other countries are colonies of that empire.
In this ideal new world, colonies have the same position and power as the imperialist.
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2.1 Generating initial empires
The goal of optimization is to find an optimal solution in terms of the variables of the
problem. We form an array of variable values to be optimized. In GA terminology, this
array is called “chromosome”, but here the term “country” is used for this array. In an
Nvar-dimensional optimization problem, a country is a 1 £ Nvar array. This array

Figure 1.
Flowchart of the proposed
algorithm

Start

Initialize the empires

Move the colonies toward
their relevant imperialist

Exchange the positions of
that imperialist and colony

Is there a colony in an empire which
has lower cost than that of imperialist

Pick the weakest colony from the weakest
empire and give it to the empire that has the

most likelihood to possess it

Yes

Yes

No

Compute the total cost of all empires

Is there an empire
with no colonies

No

Eliminate this empire

No

Done

Yes

Stop condition satisfied
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is defined by:

country ¼ p1; p2; p3; . . . ; pNvar

� �
ð1Þ

where pi s are the variables to be optimized. The variable values in the country are
represented as floating point numbers. The cost of a country is found by evaluation of
the cost function f at variables ð p1; p2; p3; . . .pNvar

Þ. So we have:

cost ¼ f ðcountryÞ ¼ f p1; p2; p3; . . . ; pNvar

� �
ð2Þ

To start the optimization algorithm, initial countries of size Ncountry is produced. We
select Nimp of the most powerful countries to form the empires. The remaining Ncol of
the initial countries will be the colonies each of which belongs to an empire.

To form the initial empires, the colonies are divided among imperialists based on
their power. That is, the initial number of colonies of an empire should be directly
proportionate to its power. To proportionally divide the colonies among imperialists,
the normalized cost of an imperialist is defined by:

Cn ¼ cn 2
i

max {ci} ð3Þ

where cn is the cost of the nth imperialist and Cn is its normalized cost. Having the
normalized cost of all imperialists, the normalized power of each imperialist is defined by:

pn ¼
CnXN imp

i¼1

Ci

����������

����������
ð4Þ

The initial colonies are divided among empires based on their power. Then the initial
number of colonies of the nth empire will be:

N:C:n ¼ round{ pn ·N col} ð5Þ

where N.C.n is the initial number of colonies of the nth empire and Ncol is the number of
initial colonies. To divide the colonies, N.C.n of the colonies are randomly chosen and given
to the nth imperialist. These colonies along with the nth imperialist form the nth empire.
Figure 2 shows the initial empires. As shown in this figure bigger empires have greater
number of colonies while weaker ones have less. In this figure, imperialist 1 has formed the
most powerful empire and consequently has the greatest number of colonies.

2.2 Movement of an empire’s colonies toward the imperialist
In CCA, the assimilation policy, pursued by some of former imperialist states, is modeled
by moving all the colonies toward the imperialist. This movement is shown in Figure 3 in
which a colony moves toward the imperialist by x units. The new position of colony is
shown in a darker color. The direction of the movement is the vector from the colony to
the imperialist. In this figure, x is a random variable with uniform (or any proper)
distribution. We consider x to be uniformly distributed between 0 and b £ d. Then:
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x , U ð0;b £ d Þ ð6Þ

whereb is a number greater than 1 and d is the distance between colony and imperialist.
b . 1 causes the colonies to get closer to the imperialist state from both sides. b .. 1
gradually results in divergence of colonies from the imperialist state while ab very close
to 1 reduces the search ability of the algorithm.

To search different points around the imperialist, a random amount of deviation is
added to the direction of movement. Figure 4 shows the new direction. In this figure,
u is a random number with uniform (or any proper) distribution. Then:

u , U ð2g; gÞ ð7Þ

where g is a parameter that adjusts the deviation from the original direction.
Nevertheless, the values of b and g are arbitrary, in most of implementations a value of
about 2 for b and about p/4 (Rad) for g results in good convergence of countries to the
global minimum.

Figure 2.
Generating the initial
empires: the more colonies
an imperialist possess, the
bigger is its relevant w
mark

. . . .

Imperialist 1

Imperialist 3

Imperialist 2

Imperialist N

Colony 1

Colony 2

Colony 3

Colony N

. . . 

. . .
.

.
. .

. 

Figure 3.
Movement of colonies
toward their relevant
imperialist

New Position
of the Colony

Imperialist

Colony

x

d
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2.3 Exchanging positions of the imperialist and a colony
While moving toward the imperialist, a colony might reach to a position with lower
cost than that of imperialist. In this case, the imperialist and the colony change their
positions. Then the algorithm will continue by the imperialist in the new position and
then colonies start moving toward this position. Figure 5(a) shows the position
exchange between a colony and the imperialist. In this figure the best colony of the
empire is shown in a darker color. This colony has a lower cost than that of imperialist.
Figure 5(b) shows the whole empire after exchanging the position of the imperialist and
that colony.

2.4 Total power of an empire
Total power of an empire is mainly affected by the power of imperialist country. But
the power of the colonies of an empire has an effect, albeit negligible, on the total power
of that empire. This fact is modeled by defining the total cost by:

T:C:n ¼ CostðimperialistnÞ þ j mean{costðcolonies of empirenÞ} ð8Þ

where T.C.n is the total cost of the nth empire and j is a positive number which is
considered to be less than 1. A little value for j causes the total power of the empire to
be determined by just the imperialist and increasing it will add to the role of the
colonies in determining the total power of an empire. The value of 0.1 for j is a good
value in most of the implementations.

Figure 4.
Movement of colonies
toward their relevant

imperialist in a randomly
deviated direction

New Position
of Colony

Imperialist

Colony

q
d

x

Figure 5.
(a) Exchanging the

positions of a colony and
the imperialist; (b) the

entire empire after
position exchange

Imperialist

Best
Colony

Imperialist

Colony

(a) (b)
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2.5 Imperialistic competition
All empires try to take the possession of colonies of other empires and control them.
The imperialistic competition gradually brings about a decrease in the power of
weaker empires and an increase in the power of more powerful ones. The imperialistic
competition is modeled by just picking some (usually one) of the weakest colonies of
the weakest empires and making a competition among all empires to possess these
(this) colonies. Figure 6 shows a big picture of the modeled imperialistic competition.
Based on their total power, in this competition, each of empires will have a likelihood of
taking possession of the mentioned colonies. In other words these colonies will not be
possessed by the most powerful empires, but these empires will be more likely to
possess them.

To start the competition, first, the possession probability of each empire which is
based on its total power is found. The normalized total cost is simply obtained by:

N:T:C:n ¼ T:C:n 2
i

max {T:C:i} ð9Þ

where T.C.n and N.T.C.n are the total cost and the normalized total cost of nth empire,
respectively. Having the normalized total cost, the possession probability of each
empire is given by:

ppn ¼
N:T:C:nXN imp

i¼1

N:T:C:i

����������

����������
ð10Þ

Figure 6.
Imperialistic competition:
the more powerful an
empire is, the more likely
it will possess the weakest
colony of the weakest
empire

Imperialist 1

Imperialist 2

Imperialist 3

Imperialist N

Empire 1

Empire 2

Empire 3

Empire N

The Weakest
EmpireWeakest Colony in

Weakest Empire

P2

P3

PN

. . . .

. . . . .
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To divide the mentioned colonies among empires based on the possession probability
of them, vector P is formed as:

P ¼ pp1
; pp2

; pp3
; . . . ; ppN imp

h i
ð11Þ

Then a vector with the same size as P whose elements are uniformly distributed
random numbers is created:

R ¼ r1; r2; r3; . . . ; rN imp

� �
ð12Þ

r1; r2; r3; . . . ; rN imp
: U ð0; 1Þ ð13Þ

Then vector D is formed by subtracting R from P:

D ¼ P2 R ¼ D1;D2;D3; . . . ;DN imp

� �
¼ pp1

2 r1; pp2
2 r2; pp3

2 r3; . . . ; ppN imp
2 rN imp

h i ð14Þ

Referring to vector D the mentioned colony (colonies) is handled to an empire whose
relevant index in D is maximum.

2.6 Eliminating the powerless empires
Powerless empires will collapse in the imperialistic competition and their colonies will
be divided among other empires. To model the collapse mechanism different criteria
can be defined to consider an empire powerless. In implementations of this paper, an
empire is assumed to be collapsed when it loses all of its colonies.

2.7 Convergence
After a while all the empires except the most powerful one will collapse and all the
colonies will be under the control of this unique empire. In this ideal new world all the
colonies have the same positions and same costs and they are controlled by an
imperialist with the same position and cost as themselves. In this ideal world, there is
no difference not only among colonies but also between the colonies and imperialist. In
this condition the imperialistic competition ends and the algorithm stops.

The main steps of CCA are summarized in the pseudo-code shown in below:

(1) Define the cost function, f, to be minimized.

(2) Select some random points on the function and using equations (2-5) initialize
the empires.

(3) Move the colonies toward their relevant imperialist referring to equations (6 and
7) (Assimilating).

(4) If there is a colony in an empire which has lower cost than that of imperialist,
exchange the positions of that colony and the imperialist.

(5) Using (8) compute the total cost of all empires (Related to the power of both
imperialist and its colonies).

(6) Pick the weakest colony (colonies) from the weakest empire and give it (them) to
the empire that has the most likelihood to possess it (Imperialistic competition).
Use equations (9-14).
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(7) Eliminate the powerless empires.

(8) If there is just one empire, stop, if not go to 2.

Theoretical proofs for convergence to asymptotic probability laws in all stochastic
optimization algorithms, considering the Markovian nature of the underlying
processes, require some sort of detailed balance or reversibility condition which means
the algorithm loses much of its efficiency. Furthermore, if one insists on eventual
convergence to the global optima in the strong or even weak sense, very slow
annealing is also called for. The strength of stochastic algorithms stem from the fact
that their very probabilistic nature ensures that the algorithms will not necessarily get
stuck at local optima, and there is no need for using any information on objective
gradients, further requiring differentiability conditions.

3. Controller design using CCA
3.1 PID controller for MIMO processes
Consider the multivariable PID control loop in Figure 7.

In Figure 1, multi variable process P(s) could be demonstrated as following:

PðsÞ ¼

p11ðsÞ K p1nðsÞ

M O M

pn1ðsÞ K pnnðsÞ

2
664

3
775 ð15Þ

where gij(s) is the transfer function between yi and uj.
In Figure 1, vectors Yd, Y, U and E are in following form:

Yd ¼ yd1 yd2 L ydn
h iT

ð16Þ

Y ¼ y1 y2 L yn
h iT

ð17Þ

U ¼ u1 u2 L un
h iT

ð18Þ

E ¼ Yd 2 Y ¼ e11 e22 L enn
h iT

ð19Þ

Multi variable PID controller C(s) in Figure 1, is as following form:

CðsÞ ¼

c11ðsÞ K c1nðsÞ

M O M

cn1ðsÞ K cnnðsÞ

2
664

3
775 ð20Þ

Figure 7.
Block diagram
of a multivariable
controlled process

Yd E U YMultivariable PID
controller

C(s)

Multivariable PID
Process

P(s)

+

−
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where cij(s) that i; j [ {1; 2;K . . . ; n} is in following form:

cijðsÞ ¼ KPij þ KIij
1

s
þ KDijs ð21Þ

where KPij is the proportional, KIij is the integral and KDij is the derivative gains of the
PID controller cij(s).

3.2 Evolutionary PID design
In designing PID controllers, the goal is to tune proper coefficients KP, KI and KD so that
the output has some desired characteristics. Usually, in time domain, these characteristics
are given in terms of overshoot, rise time, settling time and steady state error. Two kinds of
performance criteria in output tracking, usually considered in the controller designing, are
the integral squared error and integral absolute error (IAE) of the desired output.

In multivariable controller design, one of the major aims is that each output yi(t)
track the desired input ydi(t) and reduce the effect of other inputs ydj(t), for
i; j [ {1; 2; . . . ; nji – j}.

Considering the decoupling aim, IAE is defined in the following form:

IAE@
Xn
i¼1

Xn
j¼1

IAEij@
Xn
i¼1

Xn
j¼1

Z 1

0

ðjeijðtÞjÞdt ð22Þ

where IAEij is the integral of absolute error eij(t) over time, jeii(t)j is absolute error of the
output yi(t) when tracking input ydi(t) and jeij(t)j is the absolute error caused by the effect
of the input ydj(t) on the output yi(t), (i – j). The source of jeij(t)j is the coupling problem.

Another performance criteria used in controller design is the percent overshoot (PO)
and percent undershoot (PU) which is defined as follows:

POU@
Xn
i¼1

Xn
j¼1

POUij@
Xn
i¼1

Xn
j¼1

Max{POij;PUij} ð23Þ

where POij, PUij, are the PO and PU of the output yij(t) and POUij is their maximum
value. The aim is to design a controller to track the desired outputs by minimizing both
the integral of absolute error and maximum of overshoot and undershoot. Since POU
usually has smaller values compared with IAE and also to put emphasis on minimizing
POU, the total objective function is defined as IAE plus ten times of POU:

Cost ¼ IAE þ 10 £ POU ð24Þ

In the next section, CCA is used to tune the PID controller parameters for a typical
distillation column process and the results are compared with those of GA and the
method introduced in (Wang et al., 1997). Figure 8 shows how CCA is used to find
optimal PID parameters for a MIMO process. Each country in CCA is a set of controller
parameters that is evaluated by obtaining the step response of the MIMO system by
means of the mentioned controller parameters. After step responses are found, two
features of the output, namely, overshoots/undershoots and IAE are calculated and are
used to form the final cost function for the controller parameters set in the country.
Then CCA is used to find the best country that is the best set of controller parameters
for the MIMO system.

Colonial
competitive

algorithm

347



4. Case study
In this section, a multivariable PID controller is designed for a MIMO model of a
chemical process. This system is a typical 2 £ 2 model of distillation column taken
from Luyben (1986). The controller is designed using two evolutionary algorithms,
CCA and GA. Both of the controllers, obtained by evolutionary algorithms CCA and
GA, are compared to one obtained by delayed relay feedback (DRF) method by
simulating the entire control process. A simple schematic of distillation column system
(DCS) is shown in Figure 9.

The matrix transfer function of DCS is defined as:

XDðsÞ

XBðsÞ

" #
¼

12:8e2s

1þ16:7s
218:9e23s

1þ21s

6:6e27s

1þ10:9s
219:4e23s

1þ14:4s

2
4

3
5 ·

RðsÞ

SðsÞ

" #
a ð25Þ

Figure 8.
Flowchart of CCA to find
the controller parameters

Start Compute the total cost of all empires Pick the weakest colony from the 
weakest empire and give it to the empire
that has the most likelihood to possess it 

Exchange the positions of
that imperialist and colony Is there an empire

with no colonies

Eliminate this empire

Number of Imperialist ==1
(Stop Condition)

Position of the Imperialist gives the
Optimal PID Coefficients

Is there a colony in an empire
which has lower cost than that

of the imperialist

Initialize the empires

Move the colonies toward
their relevant imperialist
Evaluate Cost Function

PID
Parameters

Cost Function
Inputs

Multivariable
PID controller

C(s)

Multivariable
PID Process

P(s)

Extracting
Output

Properties

Overshoot
and IAE

Cost Function
Outputs

Cost Function

Y

Yes
Yes

No

No

UE
−

+
Yd

(Step)

Figure 9.
A simple schematic of DCS

Enriched Vapor

Cooling Water

Condensate

Reflux R(s)

Vapor

Steam flow S(s)

Bottom product XB(s)

Feed

Bottom
Liquid

Distillate XD(s)
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where XD(s) and XB(s) are percentage of methanol in the distillate and percentage of
methanol in the bottom products, respectively. Also R(s) and S(s) are reflux flow rate
and steam flow rate in the reboiler, respectively, (Luyben, 1986).

DCS is a 2 £ 2 MIMO system with strong interactions between inputs and outputs.
The four transfer functions in multivariable process have first-order dynamics and
significant time delays. In Wang et al. (1997) a multivariable PID controller for DCS is
designed using decentralized relay feedback (DRF) method. The diagonal and
off-diagonal elements of this controller are designed in PI and PID forms, respectively.
This controller is as follows:

CðsÞ ¼
0:184 þ 0:0469 1

s
20:0102 2 0:0229 1

s
þ 0:0082s

20:0674 þ 0:0159 1
s
2 0:0536s 20:066 2 0:0155 1

s

2
4

3
5 ð26Þ

To compare the results of CCA and GA with DRF method, in tuning parameters of the
PID controller for the plant defined by (25), controller C(s) is considered in the
following form:

CðsÞ ¼
KP11 þ KI11

1
s

KP12 þ KI12
1
s
þ KD12s

KP21 þ K I21
1
s
þ KD21s KP22 þ KI22

1
s

2
4

3
5 ð27Þ

The design objective will be a ten dimensional optimization problem of
determining the optimal coefficients ½KP11 KI11 KP12 K I12 KD12 KP21 KI21

KD21 KP22 KI22� to minimize the cost function (24). Both CCA and GA are
applied to this problem for 20 times and the best result of each is given and
studied in this section.

A CCA with 100 initial countries, 12 of which are chosen as the initial imperialists is
used to tune controller parameters. In this algorithm b and g are set to 2 and 0.5 (rad),
respectively. The maximum number of iterations of the CCA is set to 500 but it reached
to the total cost of 18.34 in 237 iterations. This is because of the fact that, at iteration
237, imperialistic competition concluded to the state in which only one imperialist is
alive, when the imperialistic competition stops and the algorithm hopefully converges
to the optimal point.

A GA with 100 initial population, tournament selection, Gausian mutation and
scattered crossover was used to tune the parameters of the multivariable PID controller
for the simulated process. To fully exploit GAs potential in cost minimization it was
equipped with a hybrid function. Figure 10 shows the minimum costs for the best
results of 20 different runs of CCA and GA. As shown in this figure, the steady state
convergence value of CCA is 18.34, which is smaller than that of GA, 20.63. Being
randomly initialized at a bad start point, CCA converges quickly and reaches to a
better cost value in less iteration, compared with GA.

Parameters of PID controller and their relevant cost values obtained by CCA, GA
and DRF methods are demonstrated in Tables I and II. According to Table II, the
controller obtained by GA has resulted in the least IAE21, POU21 for the simulated
process. That is, comparing to CCA and DRF, using controller obtained by GA, the
second output is decoupled from the first input, in the best way. But for the first output,
the controller obtained by CCA is the best one. In spite of the least POU12 value

Colonial
competitive

algorithm

349



Figure 10.
Minimum cost of CCA
and GA versus iteration
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PID parameters CCA GA DRF

KP11 0.275 0.1763 0.184
KI11 0.0803 0.0592 0.0469
KP12 20.0657 20.0418 20.0102
KI12 20.029 20.0246 20.0229
KD12 0.0835 0.037 0.0082
KP21 20.0522 20.0404 20.0674
KI21 0.033 0.0227 0.0159
KD21 20.068 20.0425 20.0536
KP22 20.1243 20.0827 20.066
KI22 20.021 20.019 20.0155

Table I.
Parameters of PID
controller obtained
by CCA, GA and DRF

Method
Criteria CCA GA DRF

IAE11 3.8537 4.9824 4.9278
IAE12 1.0148 1.0351 1.0625
IAE21 2.6570 2.2904 4.4716
IAE22 7.1589 8.8043 9.0288
IAE 14.6844 17.1121 19.4907
POU11 (percent) 9.18 10.09 9.91
POU12 (percent) 7.23 6.40 4.07
POU21 (percent) 10.97 8.88 22.05
POU22 (percent) 9.33 9.82 9.86
POU (percent) 37.07 35.19 45.89
Cost 18.3549 20.6313 24.0791

Table II.
Different parts of cost
function that are
optimized by methods,
CCA, GA and DRF
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obtained by DRF, CCA’s relevant IAE11, IAE12, IAE22, POU11, POU22 are the least,
resulting in the best tracking and the least coupling. In general, regarding Table II, the
controller obtained by GA has the best performance in minimizing overshoot and
undershoot in the responses while CCA has resulted in a controller which performs
well in tracking the inputs by outputs of the system. However, considering the total
cost, the controller obtained by CCA has generally the best performance. The results in
Table II show the ability of CCA in dealing with challenging optimization problems.

Figure 11 shows the response of controlled distillation column process to step inputs
using different controllers obtained by CCA, GA and DRF. To have a better view of
tracking ability of different controllers, the absolute tracking and coupling errors for
both outputs are shown in Figure 12. In these two figures step inputs are applied with
10 and 110 s delays, respectively.

Figure 11.
The response

of distillation column
process to different delays

in step inputs: (a) first
output; (b) second output
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Similar to other evolutionary algorithms such as GA and PSO, the discussed method in
this paper, CCA, does not necessarily guarantee the real-time requirements in exact
applications. But as shown in this paper, CCA has better convergence rate than GA.
Hence, in applications with cost functions of high computational complexity, the use of
CCA will be more preferable. In the problem of designing a MIMO PID controller,
studied in this paper, each function call requires about 1.5 s on a PC with a CPU of
1.7 GHz, 80 GB HDD and 1 GB of RAM to run. Therefore, a GA with 100 initial
populations that runs for 300 iterations requires 30,000 function calls. The approximate
time used to run GA will be 30,000 £ 1.5 s ¼ 12.5 h. On the other hand, by having
more convergence rate than GA, CCA can save the time required to find the global
optimum. This fact can be clearly seen in Figure 11 where CCA not only has reached to
the final value of GA in about 15 iterations but also has continued to reach a more
optimal point. So in spite of the fact that CCA, like GA and PSO, hardly guarantee the
requirements of exact applications in real-time mode it can be useful in off-line designs
in which global optimum value needs to be calculated exactly.

Figure 12.
Absolute error of the
response of distillation
column process to
different delays in step
inputs: (a) absolute error of
first output; (b) absolute
error of second output
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5. Conclusion
In this paper, a novel evolutionary algorithm, inspired from a socio political process, was
discussed and its application to a real world industrial problem was demonstrated.
Unlike the existing evolutionary algorithms that are inspired by natural processes such
as natural evolution or annealing process in materials; CCA, uses imperialism and
imperialistic competition, socio-political evolution processes, as source of inspiration.
The discussed algorithm consists of countries that are initially divided into some
empires. Competition among the empires and the movement of the colonies toward the
imperialist states hopefully lead to the convergence of countries to the global minimum
of the cost function. As a case study, using CCA, a multivariable controller was designed
for an industrial distillation column process. The design objective was to optimally tune
the PID controller so that the integral of absolute errors, overshoots and undershoots be
minimized. The coefficients of PID controller were obtained by two evolutionary
methods, CCA and GA. In the determination of the tradeoff coefficients in fitness
functions, we emphasized on reduction of the error integral as long as the
overshoots/undershoots remain acceptable. Simulation results showed that not only
was the system able to significantly reduce the coupling effect, but also the response
speed was significantly increased. The results of controlling the simulated process with
different controllers showed that the proposed method for evolutionary optimization,
CCA, had a higher convergence rate than GA, reaching to a better solution.
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