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A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global
optimization. The ICA is a new meta-heuristic optimization developed based on a socio-
politically motivated strategy and contains two main steps: the movement of the colonies
and the imperialistic competition. Here different chaotic maps are utilized to improve the
movement step of the algorithm. Seven different chaotic maps are investigated and the
Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm
with the other ICA-based methods demonstrates the superiority of the CICA for the bench-
mark functions.
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1. Introduction

The imperialist competitive algorithm (ICA) is one of the recent meta-heuristic optimization techniques. This novel opti-
mization method developed based on a socio-politically motivated strategy. The ICA is a multi-agent algorithm in which
each agent is a country and can be either a colony or an imperialist. These countries form some empires in the search space.
Movement of the colonies toward their related imperialist and imperialistic competition among the empires forms the basis
of the ICA. During these movements, the powerful imperialists are reinforced and the weak ones are weakened and gradually
collapsed, directing the algorithm towards optimum points [1]. Imperialistic competition is the main part of the ICA and
hopefully causes the colonies to converge to the global minimum of the cost function. This algorithm is proposed by
Atashpaz-Gargari and co-workers [2,3]. Kaveh and Talatahari improved the ICA by defining two new movement steps and
investigated the performance of this algorithm to optimize the design of skeletal structures [1] and engineering optimization
problems [4].

Characterizing the irregular behavior that can be caused either by deterministic chaos or by stochastic processes is not an
easy task to perform and it is still an unsolved problem to distinguish among these two types of phenomena. However, the
interest in studying the use of chaotic systems instead of random ones arises when the theme of chaos reaches a high inter-
disciplinary level involving not only mathematicians, physicians and engineers but also biologists, economists and scientists
from different areas [5,6]. One of these fields is based on the idea of using chaotic systems for stochastic optimization algo-
rithms [7].

Although chaos and random signals share the property of long term unpredictable irregular behavior and many of ran-
dom generators in programming softwares as well as the chaotic maps are deterministic; however chaos can help order
. All rights reserved.
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to arise from disorder. Similarly, many optimization algorithms are inspired from biological systems where order arises from
disorder. In these cases disorder often indicates both non-organized patterns and irregular behavior, whereas order is the
result of self-organization and evolution and often arises from a disorder condition or from the presence of dissymmetries.
Self-organization and evolution are two key factors of many stochastic optimization techniques. Due to these common prop-
erties between chaos and optimization algorithms, simultaneous use of these concepts seems to improve the performance.
Utilizing chaotic sequences for particle swarm optimization [8], harmony search [9], bee colony [10], and Big Bang – Big
Crunch [11] are some familiar examples of this combination. Seemingly the benefits of such combination is a generic for
other stochastic optimization and experimental studies confirmed this; although, this has not mathematically been proved
yet [12].

This paper adds such positive benefits of the chaos to the ICA algorithm. In this way, generating different chaotic systems
substitute random numbers for different parameters of the ICA. Thus different methods that use chaotic maps as efficient
alternatives to pseudorandom sequences have been proposed. In order to evaluate these algorithms, some mathematical
benchmark examples are utilized. The results reveal the improvement of the new algorithm due to the application of the
chaotic signals in place of random sequences.

The rest of the paper is organized as follows. Review of the ICA is presented in Section 2. The chaotic maps that generate
chaotic sequences for the ICA are described in Section 3. In Section 4, we introduce different variants of the proposed method
which are called chaotic imperialist competitive algorithms (CICA). In Section 5, the proposed methods are tested through
benchmark problems, and the simulation results are compared to each other and the standard ICA. Finally, Section 6 is de-
voted to some conclusions based on the reported comparison analysis.
2. Imperialist competitive algorithm

The meta-heuristic optimization techniques have widely been investigated to reach global optimum of difficult problems.
Many of these methods are created by the simulation of the natural processes. Genetic algorithms, particle swarm optimi-
zation [13], ant colony optimization [14], harmony search [15] and charged system search [16] are some familiar examples of
meta-heuristic algorithms. This paper improves the performance of the imperialist competitive algorithm by using the cha-
otic maps as a new optimization algorithm contrary to the above mentioned methods which is not based on phenomena
from the nature.

2.1. General aspects [2]

The ICA simulates the social political process of imperialism and imperialistic competition. The agents of this algorithm
are called ‘‘countries’’. There are two types of countries; some of the best countries (in optimization terminology, countries
with lower cost) are selected to be the ‘‘imperialist’’ states and the remaining countries form the ‘‘colonies’’ of these impe-
rialists. All the colonies of initial countries are divided among the imperialists based on their ‘‘power’’. The power of each
country is inversely proportional to its cost. The imperialist states together with their colonies form some ‘‘empires’’.

After forming initial empires, the colonies in each empire start moving toward their relevant imperialist country. This
movement is a simple model of assimilation policy which was pursued by some of the imperialist states. The total power
of an empire depends on both the power of the imperialist country and the power of its colonies. This fact is modeled by
defining the total power of an empire as the power of the imperialist country plus a percentage of mean power of its
colonies.

Then the imperialistic competition begins among all the empires. Any empire that is not able to succeed in this compe-
tition and cannot increase its power (or at least prevent losing its power) will be eliminated from the competition. The impe-
rialistic competition will gradually result in an increase in the power of the powerful empires and a decrease in the power of
weaker ones. Weak empires will loose their power and ultimately they will collapse. The movement of colonies toward their
relevant imperialist states along with competition among empires and also the collapse mechanism will cause all the coun-
tries to converge to a state in which there exist just one empire in the world and all the other countries are colonies of that
empire. In this ideal new world, colonies will have the same position and power as the imperialist.

2.2. Original ICA

Each country is formed of an array of variable values and the related cost of a country is found by evaluation of the cost
function fcost of the corresponding variables considering the related objective function. Total number of initial countries is set
to Ncountry and the number of the most powerful countries to form the empires is taken as Nimp. The remaining Ncol of the
initial countries will be the colonies each of which belongs to an empire. In this paper, 10% of countries belong to empires
and the remaining is used as colonies. To form the initial empires, the colonies are divided among imperialists based on their
power. To fulfill this aim, the normalized cost of an imperialist is defined as
Cn ¼ f ðimp;nÞ
cost �max

i
f ðimp;iÞ
cost

� �
ð1Þ
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where f ðimp;nÞ
cos t is the cost of the nth imperialist and Cn is its normalized cost. The initial colonies are divided among empires

based on their power or normalized cost, and for the nth empire it will be as follows
NCn ¼ Round
CnPNimp

i¼1 Ci

�����
����� � Ncol

 !
ð2Þ
where NCn is the initial number of the colonies associated to the nth empire which are selected randomly among the colo-
nies. These colonies along with the nth imperialist form the nth empire.

In the ICA, the assimilation policy is modeled by moving all the colonies toward the imperialist. This movement is shown
in Fig. 1 in which a colony moves toward the imperialist by a random value that is uniformly distributed between 0 and
b � d:
fxgnew ¼ fxgold þ Uð0; b� dÞ � fV1g ð3Þ
where b is a control parameter and d is the distance between colony and imperialist. {V1} is a vector which its start point is
the previous location of the colony and its direction is toward the imperialist locations. The length of this vector is set to
unity.

In the original ICA, to increase the searching around the imperialist, a random amount of deviation is added to the direc-
tion of movement. Fig. 1 shows the new direction which is obtained by deviating the previous location of the country as great
as h which is a random number with uniform distribution.

If the new position of a colony is better than that of the corresponding imperialist (considering the cost function), the
imperialist and the colony change their positions and the new location with the lower cost becomes the imperialist.

Imperialistic competition is another strategy utilized in the ICA methodology. All empires try to take the possession of
colonies of other empires and control them. The imperialistic competition gradually reduces the power of weaker empires
and increases the power of more powerful ones. The imperialistic competition is modeled by just picking some (usually one)
of the weakest colonies of the weakest empires and making a competition among all empires to possess these (this) colonies.
Based on their total power, in this competition, each of empires will have a likelihood of taking possession of the mentioned
colonies.

Total power of an empire is affected by the power of imperialist country and the colonies of an empire as
TCn ¼ f ðimp;nÞ
cos t þ n �

PNCn
i¼1 f ðcol;iÞ

cos t

NCn
ð4Þ
where TCn is the total cost of the nth empire and n is a positive number. Similar to Eq. (1), the normalized total cost is defined
as
NTCn ¼ TCn �max
i
ðTCiÞ ð5Þ
where NTCn is the normalized total cost of the nth empire. Having the normalized total cost, the possession probability of
each empire is evaluated by
Pn ¼
NTCnPNimp

i¼1 NTCi

�����
����� ð6Þ
When an empire loses all its colonies, it is assumed to be collapsed. In this model implementation where the powerless em-
pires collapse in the imperialistic competition, the corresponding colonies will be divided among the other empires.
Fig. 1. Movement of colonies to its new location in the original ICA.
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Moving colonies toward imperialists are continued and imperialistic competition and implementations are performed
during the search process. When the number of iterations reaches a pre-defined value, the search process is stopped.

2.3. Improved ICA

Recently, Kaveh and Talatahari [1] presented an improved ICA. This algorithm is obtained by modifying the movement
stage of the original algorithm. Considering the movement process of the ICA, a point out of the colony-imperialistic contact-
ing line can be obtained as indicated in Fig. 2. This algorithm not only uses different random values, but also utilizes the
orthogonal colony-imperialistic contacting line instead of h for deviating the colony as follows
fxgnew ¼ fxgold þ b� d� frandg � fV1g þ Uð�1;þ1Þ � tanðhÞ � d� fV2g; fV1g � fV2g ¼ 0; kfV2gk ¼ 1 ð7Þ
where {V2} is perpendicular to {V1}, and therefore here after this algorithm is called orthogonal imperialist competitive algo-
rithm (OICA). Since this vector must be crossed the point obtained from the two first terms, we use a random value by using
U(�1,+1) for the third term of the Eq. (7) which changes its value in addition to its direction by using negative values.

3. Chaotic maps

Currently, chaos as a kind of dynamic behavior of nonlinear systems has raised enormous interest in different fields of
sciences such as chaos control, synchronization, pattern recognition, optimization theory and so on [17]. In random-based
optimization algorithms, the methods using chaotic variables instead of random variables are called chaotic optimization
algorithm (COA). Optimization algorithms based on the chaos theory are stochastic search methodologies that differ from
any of the existing evolutionary computation and swarm intelligence methods. Due to the non-repetition of chaos, it can
carry out overall searches at higher speeds than stochastic searches that depend on probabilities [18].

When a random number is needed by the ICA algorithm, it can be generated by iterating one step of the chosen chaotic
map (cm) being started from a random initial condition at the first iteration of the ICA. One-dimensional noninvertible maps
are the simplest systems with capability of generating chaotic motion [19]. In following subsections, we review some of
well-known one-dimensional maps.

3.1. Logistic map

The equation of this map appears in nonlinear dynamics of biological population evidencing chaotic behavior [20],
xkþ1 ¼ axkð1� xkÞ ð8Þ
In this equation, xk is the kth chaotic number, with k denoting the iteration number. Obviously, x 2 (0,1) under the conditions
that the initial x0 2 (0,1) and that x0 R {0.0,0.25,0.75,0.5,1.0}. In the experiments a = 4 is used.

3.2. Tent map

The tent map, similar to the logistic map, displays some very specific chaotic effects. This map is defined by the following
equation [19]
xkþ1 ¼
2xk xk < 0:5
2ð1� xkÞ xn P 0:5

�
ð9Þ
Fig. 2. Movement of colonies to its new location in the improved ICA.
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3.3. ICMIC map

The iterative chaotic map with infinite collapses (ICMIC) is defined by
xkþ1 ¼ sin
a
xn

� �
ð10Þ
where a 2 (0,1) is an adjustable parameter [21].
3.4. Sinusoidal map

This iterator [20] is represented by
xkþ1 ¼ ax2
k sinðpxkÞ ð11Þ
For a = 2.3 and x0 = 0.7, it has the following simplified form
xkþ1 ¼ sinðpxkÞ ð12Þ
3.5. Circle map

The Circle map [22] is represented by
xkþ1 ¼ xk þ b� ða=2pÞ sinð2pxkÞmodð1Þ ð13Þ
With a = 0.5 and b = 0.2, it generates chaotic sequence in (0,1).
3.6. Gauss map

The following equations define Gaussian map [23]
xkþ1 ¼
0 xk ¼ 0
1=xk mod ð1Þ otherwise

�

1=xk mod ð1Þ ¼ 1
xk
� 1

xk

� 	
ð14Þ
This map also generates chaotic sequences in (0,1).
3.7. Sinus map

Sinus map is defined as
xkþ1 ¼ 2:3ðxkÞ2 sinðpxkÞ ð15Þ
4. Chaotic imperialist competitive algorithm

Taking properties of chaos like ergodicity, some new searching algorithms called chaos optimization algorithms (COAs)
were presented [24–26]. COA can more easily escape from local minimum point than the stochastic optimization algorithms.
The random-based algorithms often escape from local minimum point by admitting some unacceptable solutions with a cer-
tain probability. On the contrary, a COA using a chaotic motion can escape from local minimum point. In addition to quasi-
stochastic property, the other property of chaos that can be advantageous in the optimization is the sensitivity to the initial
condition [12]. Therefore random parameters of the ICA may affect the algorithm performance. As mentioned in Section 2,
imperialists countries started to improve their colonies. We have modeled this fact by moving all the colonies toward the
imperialist using Eq. (7). In order to increase the searching around the imperialist we use chaotic variables instead of random
variables in Eq. (7).

In this paper, sequences generated from chaotic systems substitute the random numbers for the ICA parameters, where it
is necessary to make a random-based choice. In this way, it is intended to improve the global convergence and to prevent
being trapped in a local solution.

New chaotic ICA (CICA) algorithms may simply be classified and described as follows:
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4.1. CICA 1

The vector {rand} of Eq. (7) is modified by the selected chaotic maps and the assimilation (moving the colonies of an em-
pire toward the imperialist) equation is modified by
Table 1
Specific

Func

Grie

Rast

Rose

Ackl
fxgnew ¼ fxgold þ b� d� fcmg � fV1g þ Uð�1;þ1Þ � tanðhÞ � d� fV2g; fV1g � fV2g ¼ 0; kfV2gk ¼ 1 ð16Þ
where {cm} is a chaotic vector based on the selected map.

4.2. CICA 2

Parameter U(�1,+1) of Eq. (7) is modified by the selected chaotic maps and the assimilation equation is modified by
fxgnew ¼ fxgold þ b� d� frandg � fV1g þ cm� tanðhÞ � d� fV2g; fV1g � fV2g ¼ 0; kfV2gk ¼ 1 ð17Þ
where cm is a chaotic variable based on the selected map.

4.3. CICA3

CICA-1 and CICA-2 are combined, that is chaotically modification of {rand} and U(�1,+1) values when needed, as
fxgnew ¼ fxgold þ b� d� fcmg � fV1g þ cm� tanðhÞ � d� fV2g; fV1g � fV2g ¼ 0; kfV2gk ¼ 1 ð18Þ
5. Numerical examples

To evaluate the efficiency and performance of the proposed algorithms, we used four benchmark functions. These are
some well-known mathematical examples presented in Table 1. The algorithms contain the ICA, its improved variant (OICA)
and the new variants as described in the previous section.

In order to discover the potential of the algorithms, we define success rate in Eq. (19) as
Sr ¼ 100
Nsuccessful

Nall

����
Q

: ð19Þ
Nall is the number of all trials, Nsuccessful is the number of trials which found the solution on the Q, Q is the stopping condition
of the algorithm, when it converges into Q tolerance and it is defined as:
fcostðXtÞ � fcostðX�Þj j 6 Q ð20Þ
where fcost(Xt) is the cost function in tth iteration and fcos(X⁄) is the global minimum of f. The algorithms were run for 100
times and maximum iteration number was set to 1000.

Using all three variants of the CICA and considering all different chaotic maps described in Section 3, Griewank function
with N = 30 are solved 100 times for each case. The results of the success rates are shown in Table 2. The results identify that
for the all chaotic maps, the performance of CICA-3 is better than two others. CICA-2 takes the second place, however it is
weaker than the CICA-3, considerably. Comparing the results of different chaotic maps for each of the variants, it can be con-
cluded that CICA have somewhat shown better performance when Logistic and Sinusoidal maps have been used for gener-
ating chaotic signals.

As another investigation and for testing the degree of consistency of the algorithm, the CICA-3 is utilized for all the
numerical examples described in Table 1 and compared with ICA and OICA. The simulations are performed 30 times for each
algorithm. From recorded results statistical analyses are carried out when maximum iteration number was set to 2000.
Tables 3–6 show the best, the worst, the mean of results and the standard deviation for the ICA, the OICA, and the CICA-3
(Sinusoidal map have been used), for Griewank, Ackley, Rosenborck, and Rastring functions. For these examples, the number
of variables is set to 10. From the tables, it can be seen that the standard deviation of the results by CICA-3 in 30 independent
ations of the benchmark problems.

tion name Definition Interval Global minimum

wank f ðXÞ ¼ 1þ 1
4000

P30
i¼1x2

i �
Q30

i¼1 cos xiffi
i
p
� �

[�150,150] 0.0

ring f ðXÞ ¼
P10

i¼1 x2
i � 10: cosð2pxiÞ þ 10

� � [�10,10] 0.0

nbrock f ðXÞ ¼
P10�1

i¼1 100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2 [�5,5] 0.0

ey
f ðXÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

P10
i¼1x2

i

q� �
� exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

P10
i¼1 cosð2pxiÞ

q� �
þ 20þ e

[�32,32] 0.0



Table 2
Success rate of CICA algorithms using different chaotic maps for Griewank function (Q = 10�5).

CICA-1 CICA-2 CICA-3

Logistic map 33 49 76
Tent map 18 23 32
ICMIC map 20 34 55
Sinusoidal map 51 68 89
Circle map 10 18 25
Gauss map 8 14 23
Sinus map 14 21 29

Table 3
Statistical results of different methods for Griewank function (N = 10).

Methods Min (best) Mean Max (worst) SD

ICA 2.6990e�11 1.0341e�10 2.6780e�8 8.1404e�10
OICA 1.8260e�14 2.3681e�12 6.6786e�11 1.2168e�11
Present work (CICA3) 1.1707e�16 3.4777e�14 2.5794e�12 5.0708e�15

Table 4
Statistical results of different methods for Ackley function (N = 10).

Methods Min (best) Mean Max (worst) SD

ICA 8.3538e�7 7.1169e�5 9.7544e�5 8.2014e�6
OICA 2.8449e�7 3.3425e�6 6.7409e�5 4.5647e�7
Present work (CICA3) 5.7959e�8 1.0239e�7 5.1388e�6 1.2366e�7

Table 5
Statistical results of different methods for Rosenbrock function (N = 10).

Methods Min (best) Mean Max (worst) SD

ICA 0.001296 0.201608 1.217682 0.362075
OICA 0.000901 0.053585 0.175631 0.043873
Present work (CICA3) 0.000182 0.024174 0.07179 0.021891

Table 6
Statistical results of different methods for Rastring function (N = 10).

Methods Min (best) Mean Max (worst) SD

ICA 0 1.66667e�06 0.00005 9.12871e�06
OICA 0 1.27964e�06 3.83815e�05 7.00742e�06
Present work (CICA3) 0 9.34269e�09 1.06847e�07 3.42961e�08
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runs is very small. For all examples, the present algorithm finds better results and also the related standard deviation is far
better than two other ICA-based algorithms.
6. Conclusion

A novel improved imperialist competitive algorithm (ICA) using chaotic maps is presented for global optimization. The
ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy. The ICA contains coun-
tries, either a colony or an imperialist, which form some empires. Movement of the colonies and imperialistic competition
are the two main steps of the ICA. Modifying each of these steps will affect the performance of the algorithm. Here, we utilize
the positive properties of the chaotic maps to improve the orthogonal imperialist competitive algorithm (OICA). The OICA is
an improved ICA which defines two movement steps, in direction toward the imperialist locations, and orthogonal to the
pervious vector.

Three different variants of the new methodology are defined by adding the chaos to the OICA. In this way, different cha-
otic systems are utilized instead of different random numbers available in the movement steps of the OICA. For the first var-
iant (CICA-1), the random coefficient vector of {V1} is replaced with the chaotic maps. In the second one, the random
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parameter in the orthogonal vector is replaced with the chaotic maps and finally in CICA-3, both of previous conditions are
considered, simultaneously.

Seven different chaotic maps are investigated to recognize the adaptive one for the present algorithm. The results show
that Logistic and Sinusoidal maps cause better performance of the CICA than others. In addition, when all random parameters
are replaced with the chaotic maps, its performance is far better than the state that only some of them are changed. This
means the CICA-3 has better performance than two others.

In order to evaluate the algorithm with its original (ICA) and improved (OICA) variants, some other mathematical bench-
mark examples are utilized. The results reveal the improvement of the new algorithm due to the application of deterministic
chaotic signals in place of random sequences. Comparing the best, the worst and the mean of results as well as the standard
deviation for the results of the ICA, the OICA, and the CICA identify that the new algorithm not improves the reliability prop-
erty due to decrease in the standard deviation but also enhances the quality of the results due to the decrease in the best and
the mean of results.
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